Synthesis of Cr(III)-Aspartate and Cu(II)-Aspartate Complexes as Antidiabetic Compound

  • Yuli Ambarwati Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Lampung, Bandar Lampung, 35145, Indonesia
  • Dinda S. Firguna Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Lampung, Bandar Lampung, 35145, Indonesia
  • Syaiful Bahri Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Lampung, Bandar Lampung, 35145, Indonesia
  • Aspita Laila Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Lampung, Bandar Lampung, 35145, Indonesia
  • Sutopo Hadi Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Lampung, Bandar Lampung, 35145, Indonesia https://orcid.org/0000-0001-6464-7215
Keywords: antidiabetic, Cr(III)-aspartate, Cu(II)-aspartate, mice

Abstract

The synthesis of Cr(III)-Aspartate and Cu(II)-Aspartate complexes has been successfully conducted by reacting CrCl3·6H2O and CuCl2·2H2O metals with aspartic acid. Therefore, this study aimed to synthesize Cr(Asp)2Cl2 and Cu(Asp)Cl2 as well as test their antidiabetic effects. The synthesis results of Cr(Asp)2Cl2 and Cu(Asp)Cl2 in the form of light purple and blue solids were 0.3001 g and 0.3095g with a yield of 95.14% and 95.02%, respectively. Furthermore, the antidiabetic test used 27 male mice (Mus musculus) with nine treatments for 21 days. The data obtained were analyzed statistically using analysis of variance, and the antidiabetic activity was expressed in percent glucose lowering. The result showed a decrease in blood glucose levels in mice after alloxan induction, with percent glucose lowering (%GL) values of 74.1874% for Cr(Asp)2Cl2 and 76.1337% for Cu(Asp)Cl2 compounds. Therefore, the Cr(Asp)2Cl2 and Cu(Asp)Cl2 compounds can be used as antidiabetic in mice which are also potentially used as metal-based drugs for the treatment of DM.

References

Ambarwati Y., Septiani L., Bahri S., Yandri, Hadi S., Kesumaningrum ND., 2020. Antidiabetic Bioactivity Test of Chromium(III) and Copper(II) Complex Compounds On Mice (Mus musculus L.). IOP Conf. Ser.: Earth Environ. Sci., 537: 012045. https://doi.org/10.1088/1755-1315/537/1/012045

Anderson RA., 2000. Chromium and the Prevention and Control of Diabetes. Diabetes Metab., 26: 22-27. PMID: 10705100

Annissa, Suhartati T., Yandri, Hadi S., 2017. Antibacterial Activity of Diphenyltin(IV) and Triphenyltin(IV) 3-Chlorobenzoate against Pseudomonas aeruginosa and Bacillus subtilis. Orient. J. Chem., 33(3): 1133-1139. https://doi.org/10.13005/ojc/330310

Ariastuti R., Fitrawan LOM., Nugroho AE., Pramono S., 2020. Antidiabetes of Combination of Fractionated-extracts of Andrographispaniculataand Centellaasiaticain Neonatal Streptozotocin-induced Diabetic Rats. Indo. J. Pharm., 31(4): 312-322. https://doi.org/10.22146/ijp.1135

Budiasih KS., Anwar C., Santoso SJ., Ismail H., 2013a. Synthesis and Characterization of Chromium (III) Complexes with L-Glutamic Acid, Glycine and L-Cysteine. World Acad. Sci. Eng. Technol. 78: 1095-1909.

Budiasih KS., Anwar C., Santosa SJ., Ismail H., Sari IP., 2013b. Antihyperglicemic Activity of Some Chromium-Amino Acid Complex in Nicotinamide-Streptozotocin Induced Diabetic Wistar Rats. J. Chem. Pharmaceu. Res., 5(9):34-39

Cefalu WT., Hu FB., 2004. Role of Chromium in Human Health and in Diabetes. Diabetes Care, 27(11): 2741-2751. https://doi.org/10.2337/diacare.27.11.2741

DeFronzo R., Ferrannini E., Groop L., Henry RR., Herman WH., Holst JJ., Hu FB., Kahn CR., Raz I., Shulman GI., Simonson DC., Testa MA., Weiss R., 2015. Type 2 diabetes mellitus. Nat. Rev. Dis. Primers, 1: Article number 15019 https://doi.org/10.1038/nrdp.2015.19

Gielen M., 2003. An Overview of Forty Years Organotin Chemistry Developed at the Free Universities of Brussels ULB and VUB. J. Braz. Chem. Soc., 14(6): 870-877. https://doi.org/10.1590/S0103-50532003000600003.

Hadi S, Rilyanti M. 2010. Synthesis and in vitro anticancer activity of some organotin(IV) benzoate compounds. Orient J Chem. 26(3), 775-779.

Hadi S., Rilyanti M., Suharso. 2012. In Vitro Activity and Comparative Studies of Some Organotin(IV) Benzoate Derivatives Against Leukemia Cancer Cell: L-1210. Indo. J. Chem., 12(2): 172-177. https://doi.org/10.22146/ijc.21359

Hadi S., Afriyani H., Anggraini WD., Qudus HI., Suhartati T., 2015. The Synthesis and Potency Study of Some Dibutyltin(IV) Dinitrobenzoate Compounds as Corrosion Inhibitor for Mild Steel HRP in DMSO-HCl Solution. Asian J Chem., 27(4): 1509-1512. https://doi.org/10.14233/ajchem.2015.18590

Hadi S., Noviany, Rilyanti M., 2018. In Vitro Antimalarial Activity of Some Organotin(IV) 2-Nitrobenzoate Compounds Against Plasmodium falciparum. Macedon. J. Chem. Chem. Eng., 37: 185-191. https://doi.org/10.5229/JECST.2019.10.1.29

Hadi S., Lestari S., Suhartati S., Qudus HI., Rilyanti M., Herasari D., Yandri Y., 2021. Synthesis and comparative study on the antibacterial activity organotin (IV) 3-hydroxybenzoate compounds. Pure Appl. Chem., 93: 623-628. https://doi.org/10.1515/pac-2020-1103

Hansch C., Verma RP., 2009. Larvicidal activities of some organotin compounds on mosquito larvae: A QSAR study. Eur. J. Med. Chem., 44(1): 260-273. https://doi.org/ 10.1016/j.ejmech.2008.02.040

Hazani NN., Mohd Y., Ghazali SAISM., Farina Y., Dzulkifli NN., 2019. Electrochemical Studies on Corrosion Inhibition Behaviour of Synthesised 2-acetylpyridine 4-ethyl-3-thiosemicarbazone and Its Tin(IV) Complex for Mild Steel in 1 M HCl Solution. J. Electrochem, Sci. Technol., 10(1): 29-36. https://doi.org/10.5229/JECST.2019.10.1.29

Joshi R., Kumari A., Singh K., Mishra H., Pokharia S., 2020. Triorganotin(IV) complexes of Schiff base derived from 1,2,4-triazole moiety: Synthesis, spectroscopic investigation, DFT studies, antifungal activity and molecular docking studies. J. Mol. Struct., 1206: 127639,
https://doi.org/10.1016/j.molstruc.2019.127639.

Krejpcio Z., 2001. Essentiality of Chromium for Human Nutrition and Health. Polish J. Environ. Stud. 10(6): 399-404.

Kurniasiah H., Nurissalam M., Iswantoro B., Afriyani H., Qudus HI., Hadi S., 2015. The Synthesis, Characterization and Comparative Anticorrosion Study of Some Organotin(IV) 4-Chlorobenzoates. Orient. J. Chem., 31(4): 2377-2. 383. https://doi.org/10.13005/ojc/310467

Lelono RAA., Tachibana S., 2013. Preliminary Studies of Indonesian Eugenia polyantha Leaf Extracts as Inhibitors of Key Enzymes for Type 2 Diabetes. J. Med. Sci., 13(2): 103-110. https://doi.org/10.3923/jms.2013.103.110

Lenzen S., 2008. The mechanism of alloxan and streptozoticin induced diabetes, Diabetologia, 51(2): 216-226. https://doi.org/10.1007/s00125-007-0886-7

Lewicki S., Zdanowski R., Krzyżowska M., Lewicka A., Dębski B., Niemcewicz M., Goniewicz M., 2014. The role of Chromium(III) in the organism and its possible use in diabetes and obesity treatment. Ann. Agric. Environ. Med., 21(2):331-5. https://doi.org 10.5604/1232-1966.1108599.

Olokoba AB., Obateru OA., Olokoba LB., 2012. Type 2 Diabetes Mellitus: A Review of Current Trends. Oman Med. J., 27(4): 269–273. https://doi.org/10.5001/omj.2012.68

Pelin AM., Gavat CC., Balan G., Georgescu CV., 2017. Pharmacological Principles Used in Patient Monitoring with Type 2 Diabetes, Rev. Chim., 68(2): 378-383. https://doi.org/10.37358/RC.17.2.5457

Rehman W., Badshah A., Khan S., Tuyet LTA., 2009. Synthesis, characterization, antimicrobial and antitumor screening of some diorganotin(IV) complexes of 2-[(9H-Purin-6-ylimino)]-phenol. Eur. J. Med. Chem., 44(10): 3981–3985. https://doi.org/10.1016/j.ejmech.2009.04.027

Samsuar S., Simanjuntak W., Qudus HI., Yandri Y., Herasari H., Hadi S., 2021. In Vitro Antimicrobial Activity Study of Some Organotin(IV) Chlorobenzoates against Staphylococcus aureus and Escherichia coli. J. Adv. Pharm. Edu. Res., 11(2): 17-22. https://doi.org/10.51847/kaijZKAFCO

Sharma M., Siddique MW., Shamim AM., Gyanesh S., Pillai KK., 2011. Evaluation of Antidiabetic and Antioxidant Effects of Seabuckthorn (Hippophaerhamnoides L.) in Streptozotocin-Nicotinamide Induced Diabetic Rats. The Open Conf. Proc. J. 2: 53-58. https://doi.org/10.2174/2210289201102010053

Sundaramurthy SL., Kannappan G., Gayathri M., Ganesh S., 2016. Synthesis, crystal structures, spectroscopic characterization and in vitro antidiabetic studies of new Schiff base Copper(II) complexes. J. Chem. Sci., 128: 1095–1102. https://doi.org/ 10.1007/s12039-016-1099-8

Thomson KH., Chiles J., Yuen VG., Tse J., Mcneill JH., Orvig C., 2004. Comparison of Anti-Hyperglycemic Effect among Vanadium, Molybdenum and Other Metal Maltol Complexes. J. Inorg. Biochem., 98: 683–690. https://doi.org/ 10.1016/j.jinorgbio.2004.01.006.

WHO, The top 10 causes of death. https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death, 2018. (Accessed on October 20, 2020)

Yang X., Palanichamy K., Ontko AO., Rao MNA., Fang, CX., Ren J., Sreejayan N., 2005. A newly synthetic chromium complex-chromium (phenylalanine) improves insulin responsiveness and reduces whole body glucose tolerance. FEBS Lett., 579: 1458–1464. https://doi.org/10.1016/j.febslet.2005.01.049
Published
2021-12-31
How to Cite
Ambarwati, Y., Firguna, D. S., Bahri, S., Laila, A., & Hadi, S. (2021). Synthesis of Cr(III)-Aspartate and Cu(II)-Aspartate Complexes as Antidiabetic Compound. Indonesian Journal of Pharmacy, 32(4), 539-547. https://doi.org/10.22146/ijp.2484
Section
Research Article