The Metabolite Fingerprints, Antimalarial Activities and Toxicities of Artocarpus Champeden Stembark from Various Regions in Indonesia
Abstract
In Indonesia, cempedak (Artocarpus champeden Spreng) stembark from family of moraceae had been traditionally used for malarial treatment. Difference in the location of growth could cause the difference of metabolite fingerprints. As a result, there might be different toxicity and antimalarial activity in the same plants. The goal of this study was to obtain the fingerprints of the metabolites found in A. champeden stembark from different parts of Indonesia in order to authenticate and control the extract's quality. Fingerprints were performed using the HPTLC-Densitometry technique, in vitro toxicity and antimalarial activity were also determined using MTT assay and HRP2 assay. The correlation between metabolite fingerprints, toxicity and antimalarial activity was analysed using chemometrics tools: Principle Component Analysis (PCA), Partial Least Square (PLS) and Hierarchical Clustering Analysis (HCA). As a result, there is significant difference between fingerprints and toxicity profiles of A. champeden (p<0.05), whereas for antimalarial profiles, there is no significant difference between of them (p>0.05). Meanwhile, the nutrients (copper, zinc and manganese) are suspected to be responsible for the metabolite content. Besides morachalcone-A, compounds with Rf values of 0.66 and 0.63 can be proposed as additional markers because they have responsibility for antimalarial activity and toxicity.
References
Aslantürk, Ö. S. (2018). In Vitro Cytotoxicity and Cell Viability Assays: Principles, Advantages, and Disadvantages. Genotoxicity - A Predictable Risk to Our Actual World, 1–19. https://doi.org/10.5772/intechopen.71923
Balai Penelitian Tanah. (2005). Analisis Kimia Tanah, Tanaman, Air dan Pupuk. Badan Penelitian Dan Pengembangan Pertanian. http://balittanah.litbang.pertanian.go.id/ind/dokumentasi/juknis/juknis_kimia.pdf
Boonlaksiri, C., Oonanant, W., Kongsaeree, P., Phytochemistry, P. K.-, & 2000, undefined. (2000). An antimalarial stilbene from Artocarpus integer. Phytochemistry, 54(4), 415–417. https://www.sciencedirect.com/science/article/pii/S0031942200000741
Gan, G., Ma, C., & Wu, J. (2007). Data Clustering Theory, Algorithms, and Applications. ASA-SIAM Series on Statistics and Applied Probability. https://epubs.siam.org/doi/pdf/10.1137/1.9781611976335.bm
Hafid, A. F. . A. N. P. . T. L. I. D. Y. A. . H. A. R. . & W. A. (2012). The active marker compound identification of artocarpus champeden spreng. stembark extract, morachalchone a as antimalarial. International Journal of Pharmacy and Pharmaceutical Sciences, 4(5), 246–249. https://scholar.google.com/scholar?hl=id&as_sdt=0%2C5&q=hafid+champeden&btnG=#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3A0XBoVV34RuwJ%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Did
Hakim, E. H., Fahriyati, A., Kau, M. S., Achmad, S. A., Makmur, L., Ghisalberti, E. L., & Nomura, T. (1999). Artoindonesianins A and B, two new prenylated flavones from the root of Artocarpus champeden. Journal of Natural Products, 62(4), 613–615. https://doi.org/10.1021/np980279l
Heyne, K. (1987). Tumbuhan berguna indonesia. In Badan Penelitian dan Pengembangan Kehutanan, Departemen Kehutanan. https://ci.nii.ac.jp/naid/10009961369/
Kim, E. J., Kwon, J., Park, S. H., Park, C., Seo, Y. B., Shin, H. K., Kim, H. K., Lee, K. S., Choi, S. Y., Ryu, D. H., & Hwang, G. S. (2011). Metabolite profiling of angelica gigas from different geographical origins using 1H NMR and UPLC-MS analyses. Journal of Agricultural and Food Chemistry, 59(16), 8806–8815. https://doi.org/10.1021/jf2016286
Lam, D., & Processing, D. W. (2009). Clustering. New Jersey: IEEE Press . https://www.sciencedirect.com/science/article/pii/B9780123965028000206
Lazar, G. A., Florina, R., Socaciu, M., & Socaciu, C. (2015). Bioinformatics Tools for Metabolomic Data Processing and Analysis Using Untargeted Liquid Chromatography Coupled With Mass Spectrometry . Animal Science and Biotechnologies , 72(2), 103–115. https://doi.org/10.15835/buasvmcn-asb:11536
Mutiah, R., Hadya, C. M., Burhan Ma’arif, Z. A., Bhagawan, W. S., Annisa, R., Indrawijaya, Y. Y. A., Huwaida, F. I., Ria Ramadhani, D. A., Susilowati, R., & Taufik, I. (2019). Metabolite fingerprintiing of eleutherine palmifolia (L.) merr. By hptlc-densitometry and its correlation with anticancer activities and in Vitro Toxicity. Indonesian Journal of Pharmacy, 30(3). https://doi.org/10.14499/indonesianjpharm30iss3pp157
Noedl, H., Attlmayr, B., Wernsdorfer, W. H., Kollaritsch, H., & Miller, R. S. (2004). A histidine-rich protein 2-based malaria drug sensitivity assay for field use. American Journal of Tropical Medicine and Hygiene, 71(6), 711–714. https://doi.org/10.4269/ajtmh.2004.71.711
R SCHERLIEß. (2011). The MTT assay as tool to evaluate and compare excipient toxicity in vitro on respiratory epithelial cells. International Journal of Pharmaceutics, 411(1–2), 98–105. https://www.sciencedirect.com/science/article/pii/S0378517311002705
Rahajoe, J. S. (2016). Certificate of Determination, Authentication Number 2003/IPH.I.02/If.07/IX/2016. Indonesian Institue of Science.
Reich, E., & Schibli, A. (2007). High-performance thin-layer chromatography for the analysis of medicinal plants. In Thieme. http://agris.fao.org/agris-search/search.do?recordID=US201300115573
Sharma, S., & Sharma, S. (1996). Applied multivariate techniques. John Willey & Sons Inc. https://pdfs.semanticscholar.org/f80c/bfa93d86ee0642559edbcfed5214253ae4ae.pdf
Syah, Y. M., Juliawaty, L. D., Achmad, S. A., Hakim, E. H., & Ghisalberti, E. L. (2006). Cytotoxic prenylated flavones from Artocarpus champeden. Journal of Natural Medicines, 60(4), 308–312. https://doi.org/10.1007/s11418-006-0012-z
Trygg, J., Holmes, E., & Lundstedt, T. (2007). Chemometrics in metabonomics. Journal of Proteome Research, 6(2), 469–479. https://doi.org/10.1021/pr060594q
Verma, N., & And, S. S. (2015). Impact of various factors responsible for fluctuation in plant secondary metabolites. Journal of Applied Research on Medicinal and Aromatic Plants, 2(4), 105–113. https://www.sciencedirect.com/science/article/pii/S2214786115300152
WHO. (2018). Malaria. World Malaria Report. https://www.who.int/data/gho/data/themes/malaria
Widyawaruyanti, A., Devi, A. P., Fatria, N., Tumewu, L., Tantular, I. S., & Fuad Hafid, A. (2014). IN VITRO ANTIMALARIAL ACTIVITY SCREENING OF SEVERAL INDONESIAN PLANTS USING HRP2 ASSAY. International Journal of Pharmacy and Pharmaceutical Science, 6, 125–128. http://repository.unair.ac.id/56542/
Widyawaruyanti, A., Khasanah, U., Tumewu, L., Ilmi, H., Fuad Hafid, A., & Tantular, I. S. (2015). ANTIMALARIAL ACTIVITY AND CYTOTOXICITY STUDY OF ETHANOL EXTRACT AND FRACTION FROM ALECTRYON SERRATUS LEAVES. International Journal of Pharmacy and Pharmaceutical Sciences, 7, 250–253. http://repository.unair.ac.id/56571/
Widyawaruyanti, A., Subehan, Kalauni, S. K., Awale, S., Nindatu, M., Zaini, N. C., Syafruddin, D., Asih, P. B. S., Tezuka, Y., & Kadota, S. (2007). New prenylated flavones from Artocarpus champeden, and their antimalarial activity in vitro. Journal of Natural Medicines, 61(4), 410–413. https://doi.org/10.1007/s11418-007-0153-8
Wiley, J., Figueiredo, A. C., Barroso, J. G., Pedro, L. G., & Scheffer, J. J. C. (2008). Factors affecting secondary metabolite production in plants: volatile components and essential oils Factors affecting volatile and essential oil production in plants. FLAVOUR AND FRAGRANCE JOURNAL Flavour Fragr. J, 23(4), 213–226. https://doi.org/10.1002/ffj.1875
Yulia I, I., Intan P, D., Wongso, S., W Prajogo, B. E., & Indrayanto, G. (2015). Metabolite Profiling of Justicia gendarussa Burm. f. Leaves Using UPLC-UHR-QTOF-MS. Scientia Pharmaceutica, 83, 489–500. https://doi.org/10.3797/scipharm.1411-08