Microencapsulation of Ethyl Acetate Extract from Green Coffee Beans (Coffea Canephora) by Spray Drying Method
Abstract
Coffee contains caffeine and chlorogenic acid (CGA) as the main constituent benefiting human health. Extract of green coffee beans (GCB) has some limitations in terms of its unpleasant flavour, aroma, and phytoconstituents bioactivity. This study aimed to encapsulate the crude ethyl acetate (EtOAc) extracts of Gayo Robusta GCB (Coffea canephora) to overcome its limitation. Microencapsulation was carried out by spray drying method using whey protein concentrate (WPC) as a coating material to produce nutraceutical supplement microparticles. The microparticles size, morphology, and physicochemical characteristics were investigated. We found that the yield of microparticles was 39.5%, volume diameter was1.367 µm, and span was 1.162 µm. The morphology of the microparticles was irregular microspheres particle with dense, smoothness, wrinkle, shrivel, compactness, and homogeneous structure shape particles. The physicochemical properties measurentment indicated that it has scavenging radical activity value (RSA) 374.53 µg/mL, total phenol content (TPC) 6.92 g GAE/kg, caffeine content 9.12%, and CGA levels 7.19%. The spray drying microencapsulation by using WPC was able to engulf and package the unpleasant flavour and aroma of the crude extract of Gayo Robusta GCB, produce abundant yield of smaller and narrower particle, and protect and carry considerable amounts of phytoconstituents bioactivity.
References
Aguiar, J., Estevinho, B. N., & Santos, L. (2016). Microencapsulation of natural antioxidants for food application-The specific case of coffee antioxidants-A review. Trends in Food Science & Technology, 58, 21–39. https:// doi.org/10.1016/j.tifs.2016.10.012
Al Shannaq, R., & Farid, M. M. (2015). Microencapsulation of phase change materials (PCMs) for thermal energy storage systems. In L. F. Cabeza (Ed.), Advances in Thermal Energy Storage Systems (pp. 247–284). Woodhead Publishing. http://www.sciencedirect.com/science/article/pii/ B9781782420880500109
Arpagaus, C., John, P., Collenberg, A., & Rütti, D. (2017). Nanocapsules formation by nano spray drying. In Nanoencapsulation Technologies for the Food and Nutraceutical Industries (pp. 346–401). Elsevier. https://doi.org/ 10.1016/B978-0-12-809436-5.00010-0
Ballesteros, L. F., Ramirez, M. J., Orrego, C. E., Teixeira, J. A., & Mussatto, S. I. (2017). Encapsulation of antioxidant phenolic compounds extracted from spent coffee grounds by freeze-drying and spray-drying using different coating materials. Food Chemistry, 237, 623–631. https://doi.org/10.1016/ j.foodchem.2017.05.142
Bastías-Montes, J. M., Choque-Chávez, M. C., Alarcón-Enos, J., Quevedo-León, R., Muñoz-Fariña, O., & Vidal-San-Martín, C. (2019). Effect of spray drying at 150, 160, and 170 °C on the physical and chemical properties of maqui extract (Aristotelia chilensis (Molina) Stuntz). Chilean Journal of Agricultural Research, 79(1), 144–152. https://doi.org/10.4067/S0718-58392019000100144
Belviso, S., & Barbosa-Pereira, L. (2019). Coffee Supplements. In Nonvitamin and Nonmineral Nutritional Supplements (pp. 177–185). Elsevier. https:// doi.org/10.1016/B978-0-12-812491-8.00025-4
Chong, S., & Wong, C. W. (2017). Effect of spray dryer inlet temperature and maltodextrin concentration on colour profile and total phenolic content of Sapodilla (Manilkara zapota) powder. International Food Research Journal, 24, 2543–2548.
Cid, M. C., & de Peña, M.-P. (2016). Coffee: Analysis and Composition. In B. Caballero, P. M. Finglas, & F. Toldrá (Eds.), Encyclopedia of Food and Health (pp. 225–231). Academic Press. http://www.sciencedirect.com/ science/article/pii/B9780123849472001859
de Melo Pereira, G. V., de Carvalho Neto, D. P., Magalhães Júnior, A. I., do Prado, F. G., Pagnoncelli, M. G. B., Karp, S. G., & Soccol, C. R. (2020). Chemical composition and health properties of coffee and coffee by-products. In Advances in Food and Nutrition Research (Vol. 91, pp. 65–96). Elsevier. https://doi.org/10.1016/bs.afnr.2019.10.002
Desai, N. M., Gilbert Stanley, J., & Murthy, P. S. (2020). Green coffee nanoparticles: Optimisation, in vitro bioactivity and bio-release property. Journal of Microencapsulation, 37(1), 52–64. https://doi.org/10.1080/ 02652048.2019.1692946
Desai, N. M., Haware, D. J., Basavaraj, K., & Murthy, P. S. (2019). Microencapsulation of antioxidant phenolic compounds from green coffee. Preparative Biochemistry and Biotechnology, 49(4), 400–406. https://doi.org/10.1080/ 10826068.2019.1575858
Fang, Z., & Bhandari, B. (2012). Encapsulation Techniques for Food Ingredient Systems. In B. Bhandari & Y. H. Roos (Eds.), Food Materials Science and Engineering (pp. 320–348). Wiley-Blackwell. http://onlinelibrary.wiley. com/doi/10.1002/9781118 373903.ch12/summary
Fikry, M., Yusof, Y. A., M. Al-Awaadh, A., Abdul Rahman, R., Chin, N. L., & Ghazali, H. M. (2019). Antioxidative and Quality Properties of Full-Fat Date Seeds Brew as Influenced by the Roasting Conditions. Antioxidants, 8(7). https://doi.org/ 10.3390/antiox8070226
Frascareli, E. C., Silva, V. M., Tonon, R. V., & Hubinger, M. D. (2012). Effect of process conditions on the microencapsulation of coffee oil by spray drying. Food and Bioproducts Processing, 90(3), 413–424. https://doi.org/ 10.1016/j.fbp.2011.12.002
Garg, S. K. (2016). Green Coffee Bean. In Nutraceuticals (pp. 653–667). Elsevier. https://doi.org/10.1016/B978-0-12-802147-7.00047-4
Gaspar, S., & Ramos, F. (2016). Caffeine: Consumption and Health Effects. In B. Caballero, P. M. Finglas, & F. Toldrá (Eds.), Encyclopedia of Food and Health (pp. 573–578). Academic Press. http://www.sciencedirect.com/science/article/pii/B9780123849472000994
Gilbert Stanley, J. (2020). Green coffee nanoparticles: Optimisation, in vitro bioactivity and bio-release property. Journal of Microencapsulation, 37(1), 52–64. https://doi.org/10.1080/02652048.2019.1692946
Gonçalves, B., Moeenfard, M., Rocha, F., Alves, A., Estevinho, B. N., & Santos, L. (2017). Microencapsulation of a Natural Antioxidant from Coffee-Chlorogenic Acid (3-Caffeoylquinic Acid). Food and Bioprocess Tech-nology, 10(8), 1521-1530. https://doi.org/10.1007/s11947-017-1919-y
Jacobs, I. C. (2014). Atomization and Spray-Drying Processes. In Microencapsulation in the Food Industry (pp. 47–56). Elsevier. https://doi.org/10.1016/ B978-0-12-404568-2.00005-4
Khaire, R. A., & Gogate, P. R. (2019). Whey Proteins. In Proteins: Sustainable Source, Processing and Applications (pp. 193–223). Elsevier. https:// doi.org/10.1016/ B978-0-12-816695-6.00007-6
Khoddami, A., Wilkes, M. A., & Roberts, T. H. (2013). Techniques for Analysis of Plant Phenolic Compounds. Molecules, 18(2), 2328–2375. https://doi.org/ 10.3390/ molecules18022328
Kuck, L. S., & Noreña, C. P. Z. (2016). Microencapsulation of grape (Vitis labrusca var. Bordo) skin phenolic extract using gum Arabic, polydextrose, and partially hydrolyzed guar gum as encapsulating agents. Food Chemistry, 194, 569–576. https://doi.org/10.1016/j.foodchem.2015.08. 066
Kupina, S., Fields, C., Roman, M. C., & Brunelle, S. L. (2018). Determination of Total Phenolic Content Using the Folin-C Assay: Single-Laboratory Validation, First Action 2017.13. Journal of AOAC INTERNATIONAL, 101(5), 1466–1472. https://doi.org/10.5740/jaoacint.18-0031
Kusmayadi, A., Adriani, L., Abun, A., Muchtaridi, M., & Tanuwiria, U. H. (2019). The microencapsulation of mangosteen peel extract with maltodextrin from arenga starch: Formulation and characterization. Journal of Applied Pharmaceutical Science, 9(3), 33–40. https://doi.org/10.7324/JAPS.2019. 90306
Nosari, A. B. F. L., Lima, J. F., Serra, O. A., & Freitas, L. A. P. (2015). Improved green coffee oil antioxidant activity for cosmetical purpose by spray drying microencapsulation. Revista Brasileira de Farmacognosia, 25(3), 307–311. https://doi.org/10.1016/j.bjp.2015.04.006
Papoutsis, K., Golding, J. B., Vuong, Q., Pristijono, P., Stathopoulos, C. E., Scarlett, C. J., & Bowyer, M. (2018). Encapsulation of Citrus By-Product Extracts by Spray-Drying and Freeze-Drying Using Combinations of Maltodextrin with Soybean Protein and ι-Carrageenan. Foods, 7(7). https://doi.org/10.3390/foods7070115
Pietsch, A. (2017). Chapter 10—Decaffeination-Process and Quality. In B. Folmer (Ed.), The Craft and Science of Coffee (pp. 225–243). Academic Press. https://doi.org/10.1016/B978-0-12-803520-7.00010-4
Sakawulan, D., Archer, R., & Borompichaichartkul, C. (2018, September 11). Enhancing antioxidant property of instant coffee by microencapsulation via spray drying. Proceedings of 21th International Drying Symposium. 21st International Drying Symposium. https://doi.org/10.4995/IDS2018.2018. 7520
Silva Faria, W. C., da Conceição, E. C., Moura, W. de M., Barros, W. M. de, Converti, A., & Bragagnolo, N. (2020). Design and evaluation of microencapsulated systems containing extract of whole green coffee fruit rich in phenolic acids. Food Hydrocolloids, 100, 105437. https://doi.org/ 10.1016/j.foodhyd.2019.105437
Tine, Y., Renucci, F., Costa, J., Wélé, A., & Paolini, J. (2017). A Method for LC-MS/MS Profiling of Coumarins in Zanthoxylum zanthoxyloides (Lam.) B. Zepernich and Timler Extracts and Essential Oils. Molecules, 22(1), 174. https://doi.org/10.3390/ molecules22010174
Vasisht, N. (2014). Chapter 2—Factors and Mechanisms in Microencapsulation. In A. G. Gaonkar, N. Vasisht, A. R. Khare, & R. Sobel (Eds.), Microencapsulation in the Food Industry (pp. 15–24). Academic Press. http://www.sciencedirect.com/ science/article/pii/B9780124045682000029
Villanueva, D., Luna, P., Manic, M., Najdanovic–Visak, V., & Fornari, T. (2011). Extraction of caffeine from green coffee beans using ethyl lactate. 9th Green Chemistry Conference, 2. http://www.iuct.net/oldweb/pdf/David% 20Villanueva. pdf
Vinson, J. A., Chen, X., & Garver, D. D. (2019). Determination of Total Chlorogenic Acids in Commercial Green Coffee Extracts. Journal of Medicinal Food, 22(3), 314–320. https://doi.org/10.1089/jmf.2018.0039
Yashin, A., Yashin, Y., Wang, J. Y., & Nemzer, B. (2013). Antioxidant and Antiradical Activity of Coffee. Antioxidants, 2(4), 230–245. https://doi.org/ 10.3390/antiox 2040230
Copyright (c) 2021 Indonesian Journal of Pharmacy
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.