Anti-Aging Activity of Xylocarpus Granatum Phytoextracts and Xyloccensins K Compound

  • Syarif Maulana Yusuf Department of Biology, Faculty of Mathematics and Natural Sciences, IPB University, IPB Dramaga Campus, West Java, 16680, Indonesia
  • Rika Indri Astuti Department of Biology, Faculty of Mathematics and Natural Sciences, IPB University, IPB Dramaga Campus, West Java, 16680, Indonesia
  • Irmanida Batubara Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, IPB Dramaga Campus, West Java, 16680, Indonesia
  • Warinthorn Chavasiri Department of Chemistry, Faculty of Sciences, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
Keywords: antioxidant, Longevity, Reactive Oxygen Species

Abstract

Cellular aging is promoted by the deleterious effect of free radicals. This can be lowered by antioxidant treatments. Xylocarpus granatum and its compound, Xyloccensins K have been reported to have antioxidant activity but there have been no reports of antioxidant and anti-aging activities at the cellular level. Thus, the aim of this study to investigate the antioxidant and anti-aging properties of X. granatum-derived extract and Xyloccensins K at a cellular level in yeast Schizosaccharomyces pombe. Four vegetative and three generative parts of X. granatum organs including root, stem, leaf, twig, seed, flesh of fruit, and peel of fruit were extracted using 70% ethanol by the maceration method. Whereas, Xyloccensins K was obtained from seed of X. granatum.  The samples tested, other than peel of fruit, prolonged cell longevity in lower concentration as compared to that without phytoextracts treatment. Also, our data indicate that all samples could promote oxidative stress tolerance phenotype, as yeast was capable of dealing with H2O2-induced oxidative stress treatment at 1, 2, and 3 mM H2O2 with the best phenotypes by the administration of twig extracts. Most of the phytoextracts showed an increase in mitochondrial activity, except that of seed extract. The result showed the administration of Xyloccensins K compound did not increase the expression of transcriptional factors of oxidative stress response gene cluster, sty1 and pap1. We suggest that the Xyloccensins K compound acts as direct Reactive Oxygen Species (ROS) scavenger. Thus further study in elucidating the phenomenon of longevity-induced X. granatum extract is required.

Author Biographies

Rika Indri Astuti, Department of Biology, Faculty of Mathematics and Natural Sciences, IPB University, IPB Dramaga Campus, West Java, 16680, Indonesia

Department of Biology, Faculty of Mathematics and Natural Sciences, IPB University, IPB Dramaga Campus, West Java, 16680, Indonesia

Tropical Biopharmaca Research Center, IPB University, IPB Taman Kencana Campus, Taman Kencana Street No. 3, Bogor, 16128, Indonesia

Irmanida Batubara, Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, IPB Dramaga Campus, West Java, 16680, Indonesia

Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, IPB Dramaga Campus, West Java, 16680, Indonesia

Tropical Biopharmaca Research Center, IPB University, IPB Taman Kencana Campus, Taman Kencana Street No. 3, Bogor, 16128, Indonesia

References

Astuti, R. I., Listyowati, S., & Wahyuni, W. (2019). Life span extension of model yeast Saccharomyces cerevisiae upon ethanol derived-clover bud extract treatment Life span extension of model yeast Saccharomyces cerevisiae upon ethanol derived-clover bud extract treatment. IOP Conf. Ser.:Earth Environ. Sci, 299(2019), 1–9. https://doi.org/10.1088/1755-1315/299/1/012059
Barbosa, M. C., Grosso, R. A., & Fader, C. M. (2019). Hallmarks of aging: An autophagic perspective. Hallmarks of Aging and Autophagy, 9(790), 1–13. https://doi.org/10.3389/fendo.2018.00790
Barzegar, A., & Movahedi, A. A. M. (2011). Intracellular ROS protection efficiency and free radical-scavenging activity of curcumin. PLoS ONE, 6(10), 1–7. https://doi.org/10.1371/journal.pone.0026012
Barzilai, N., Huffman, D. M., Muzumdar, R. H., & Bartke, A. (2012). The Critical Role of Metabolic Pathways in Aging. Diabetes, 61(June), 1315–1322. https://doi.org/10.2337/db11-1300
Batubara, I., Darusman, L., Mitsunaga, T., Rahminiwati, M., & Djauhari, E. (2010). Potency of Indonesian medicinal plants as tyrosinase inhibitor and antioxidant agent. Journal of Biological Sciences, 10(2), 138–144. https://doi.org/10.3923/jbs.2010.138.144
Belinha, I., Amorim, M. A., Rodrigues, P., De Freitas, V., Ferreira, P. M., Mateus, N., & Costa, V. (2007). Quercetin Increases Oxidative Stress Resistance and Longevity in Saccharomyces cerevisiae. J. Agric Food Chem, 55(6), 2446–2451.
Bellini, A., Girard, P. M., Lambert, S., Tessier, L., Sage, E., & Francesconi, S. (2012). Stress Activated Protein Kinase Pathway Modulates Homologous Recombination in Fission Yeast. PLoS ONE, 7(10), 1–12. https://doi.org/10.1371/journal.pone.0047987
Berlanga, J. J., Rivero, D., Martín, R., Herrero, S., Moreno, S., & de Haro, C. (2010). Role of mitogen-activated protein kinase Sty1 in regulation of eukaryotic initiation factor 2α kinases in response to environmental stress in Schizosaccharomyces pombe. Eukaryotic Cell, 9(1), 194–207. https://doi.org/10.1128/EC.00185-09
Calvo, I. A., García, P., Ayté, J., & Hidalgo, E. (2012). The transcription factors Pap1 and Prr1 collaborate to activate antioxidant, but not drug tolerance, genes in response to H 2O 2. Nucleic Acids Research, 40(11), 4816–4824. https://doi.org/10.1093/nar/gks141
Chodakowska, I. M., Witkowska, A. M., & Zujko, M. E. (2018). Endogenous non-enzymatic antioxidants in the human body. Advances in Medical Sciences, 63(1), 68–78. https://doi.org/10.1016/j.advms.2017.05.005
Das, S. K., Samantaray, D., Sahoo, S. K., Pradhan, S. K., Samanta, L., & Thatoi, H. (2019). Bioactivity guided isolation of antidiabetic and antioxidant compound from Xylocarpus granatum J. Koenig bark. 3 Biotech, 9(5), 1–9. https://doi.org/10.1007/s13205-019-1711-y
Das, S. K., Samantaray, D., & Thatoi, H. (2015). Ethnomedicinal, Antimicrobial and Antidiarrhoeal Studies on the Mangrove Plants of the Genus Xylocarpus: A Mini Review. Journal of Bioanalysis & Biomedicine, 12(4), 1–7. https://doi.org/10.4172/1948-593x.s12-004
Fauzya, A. F., Astuti, R. I., & Mubarik, N. R. (2019). Effect of Ethanol-Derived Clove Leaf Extract on the Oxidative Stress Response in Yeast Schizosaccharomyces pombe. International Journal of Microbiology, 2019, 1–7. https://doi.org/10.1155/2019/2145378
Fehrmann, S., Paoletti, C., Goulev, Y., Ungureanu, A., Aguilaniu, H., & Charvin, G. (2013). Article Aging Yeast Cells Undergo a Sharp Entry into Senescence Unrelated to the Loss of Mitochondrial Membrane Potential. Cell Reports, 5(6), 1589–1599. https://doi.org/10.1016/j.celrep.2013.11.013
Fontana, L., Partridge, L., & Longo, V. D. (2010). Dietary Restriction, Growth Factors and Aging: from yeast to humans. Science, 328(5976), 321–326. https://doi.org/10.1126/science.1172539.Dietary
Kar, P., Biswas, P., Patra, S. K., & Ghosh, S. (2018). Transcription factors Atf1 and Sty1 promote stress tolerance under nitrosative stress in Schizosaccharomyces pombe. Microbiological Research, 206(2018), 82–90. https://doi.org/10.1016/j.micres.2017.10.002
Kokpol, U., Chavasiri, W., Tip-pyang, S., Veerachato, G., Zhao, F., Simpson, J., & Weavers, R. T. (1996). A limonoid from Xylocarpus granatum. Phytochemistry, 41(3), 903–905. https://doi.org/10.1016/0031-9422(95)00724-5
Liochev, S. I. (2013). Reactive oxygen species and the free radical theory of aging. Free Radical Biology and Medicine, 60, 1–4. https://doi.org/10.1016/j.freeradbiomed.2013.02.011
Livak, K. J., & Schmittgen, T. D. (2001). Analysis of Relative Gene Expression Data Using Real- Time Quantitative PCR and the 2-ΔΔCT Method. Methods, 25(4), 402–408. https://doi.org/10.1006/meth.2001.1262
Lutchman, V., Medkour, Y., Samson, E., Arlia-ciommo, A., Dakik, P., Cortes, B., Feldman, R., & Mohtashami, S. (2016). Discovery of plant extracts that greatly delay yeast chronological aging and have different effects on longevity-defining cellular processes. Oncotarget, 7(13), 16542–16566.
Madrid, M., Soto, T., Franco, A., Paredes, V., Vicente, J., Hidalgo, E., Gacto, M., & Cansado, J. (2004). A cooperative role for Atf1 and Pap1 in the detoxification of the oxidative stress induced by glucose deprivation in Schizosaccharomyces pombe. Journal of Biological Chemistry, 279(40), 41594–41602. https://doi.org/10.1074/jbc.M405509200
Maeta, K., Nomura, W., Takatsume, Y., Izawa, S., & Inoue, Y. (2007). Green Tea Polyphenols Function as Prooxidants To Activate Oxidative-Stress-Responsive Transcription Factors in Yeasts ᰔ. Applied and Environmental Microbiology, 73(2), 572–580. https://doi.org/10.1128/AEM.01963-06
Masoro, E. J. (2005). Overview of caloric restriction and ageing. Mechanisms of Ageing and Development, 126(2005), 913–922. https://doi.org/10.1016/j.mad.2005.03.012
Minami, H., Hamaguchi, K., Kubo, M., & Fukuyama, Y. (1998). A Benzophenone and a Xanthone from Garcinia subelliptica. Phytochemistry, 49(6), 1783–1785. https://doi.org/10.1016/s0031-9422(98)00213-1
Otín, C. L., Blasco, M. A., Partridge, L., Serrano, M., & Kroemer, G. (2013). The Hallmarks of Aging. Cell, 153(6), 1194–1217. https://doi.org/10.1016/j.cell.2013.05.039
Palermo, V., Mattivi, F., Silvestri, R., La Regina, G., Falcone, C., & Mazzoni, C. (2012). Apple can act as anti-aging on yeast cells. Oxidative Medicine and Cellular Longevity, 2012(4), 1–8. https://doi.org/10.1155/2012/491759
Pan, Y., Schroeder, E. A., Ocampo, A., Barrientos, A., & Shadel, G. S. (2012). Regulation of Yeast Chronological Life Span by TORC1 via Adaptive Mitochondrial ROS Signaling. Cell Metab, 13(6), 668–678. https://doi.org/10.1016/j.cmet.2011.03.018.Regulation
Prastya, M. E., Astuti, R. I., Batubara, I., & Wahyudi, A. T. (2018). Bacillus sp. SAB E-41-derived extract shows antiaging properties via ctt1-mediated oxidative stress tolerance response in yeast Schizosaccharomyces pombe. Asian Pacific Journal of Tropical Biomedicine, 8(11), 533–539. https://doi.org/10.4103/2221-1691.245958
Rahal, A., Kumar, A., Singh, V., Yadav, B., Tiwari, R., Chakraborty, S., & Dhama, K. (2014). Oxidative stress, prooxidants, and antioxidants: The interplay. BioMed Research International, 2014, 1–19. https://doi.org/10.1155/2014/761264
Rallis, C., Codlin, S., & Bähler, J. (2013). TORC1 signaling inhibition by rapamycin and caffeine affect lifespan, global gene expression, and cell proliferation of fission yeast. Aging Cell, 12(4), 563–573. https://doi.org/10.1111/acel.12080
Roux, A. E., Chartrand, P., Ferbeyre, G., & Rokeach, L. A. (2010). Fission yeast and other yeasts as emergent models to unravel cellular aging in eukaryotes. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 65(1), 1–8. https://doi.org/10.1093/gerona/glp152
Roux, A. E., Quissac, A., Chartrand, P., Ferbeyre, G., & Rokeach, L. A. (2006). Regulation of chronological aging in Schizosaccharomyces pombe by the protein kinases Pka1 and Sck2. Aging Cell, 5(4), 345–357. https://doi.org/10.1111/j.1474-9726.2006.00225.x
Roy, A., & Saraf, S. (2006). Limonoids : Overview of Significant Bioactive Triterpenes. Biol. Pharm. Bull., 29(February), 191–201.
Sarima, Astuti, R. I., & Meryandini, A. (2019). Modulation of Aging in Yeast Saccharomyces cerevisiae by Roselle Petal Modulation of Aging in Yeast Saccharomyces cerevisiae by Roselle Petal Extract (Hibiscus sabdariffa L .). American Journal of Biochemistry and Biotechnology, 15(1), 23–32. https://doi.org/10.3844/ajbbsp.2019.23.32
Simlai, A., & Roy, A. (2013). Biological activities and chemical constituents of some mangrove species from Sundarban estuary : An overview. Pharmacognosy Reviews, 7(14), 170–178. https://doi.org/10.4103/0973-7847.120518
Veal, E. A., Day, A. M., & Morgan, B. A. (2007). Hydrogen Peroxide Sensing and Signaling. Molecular Cell, 26(1), 1–14. https://doi.org/10.1016/j.molcel.2007.03.016
Vivancos, A. P., Castillo, E. A., Jones, N., Ayté, J., & Hidalgo, E. (2004). Activation of the redox sensor Pap1 by hydrogen peroxide requires modulation of the intracellular oxidant concentration. Molecular Microbiology, 52(5), 1427–1435. https://doi.org/10.1111/j.1365-2958.2004.04065.x
Wu, J., Xiao, Q., Huang, J., Xiao, Z., Qi, S., Li, Q., & Zhang, S. (2004). Xyloccensins O and P, unique 8,9,30-phragmalin ortho esters from Xylocarpus granatum. Organic Letters, 6(11), 1841–1844. https://doi.org/10.1021/ol049444g
Xiang, L., Sun, K., Lu, J., Weng, Y., Taoka, A., Sakagami, Y., & Qi, J. (2011). Anti-aging effects of phloridzin, an apple polyphenol, on yeast via the SOD and Sir2 genes. Bioscience, Biotechnology and Biochemistry, 75(5), 854–858. https://doi.org/10.1271/bbb.100774
Zamani, N., Gazali, M., & Batubara, I. (2015). The Study of Tyrosinase and Antioxidant Activity of Xylocarpus Granatum Koenig Seed Kernel Extract toward Evidence Based Indigenous Knowledge from Togean Archipelago, Indonesia. Journal of Marine Science: Research & Development, 5(3), 1–5. https://doi.org/10.4172/2155-9910.1000168
Zuin, A., Carmona, M., Morales-Ivorra, I., Gabrielli, N., Vivancos, A. P., Ayté, J., & Hidalgo, E. (2010). Lifespan extension by calorie restriction relies on the Sty1 MAP kinase stress pathway. EMBO Journal, 29(5), 981–991. https://doi.org/10.1038/emboj.2009.407
Published
2021-08-10
How to Cite
Yusuf, S. M., Indri Astuti, R., Batubara, I., & Chavasiri, W. (2021). Anti-Aging Activity of Xylocarpus Granatum Phytoextracts and Xyloccensins K Compound. Indonesian Journal of Pharmacy, 32(3), 365-375. https://doi.org/10.22146/ijp.1430
Section
Research Article