Identification of Antioxidant Compounds from Gynura procumbens Using LC-MS/MS-Based Metabolomics

  • Aurelia Cyntia Putri Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, Bogor 16680, Indonesia
  • Auliya Ilmiawati Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, Bogor 16680, Indonesia; Tropical Biopharmaca Research Center- Institute of Research and Community Services, IPB University, Bogor 16128, Indonesia
  • Mohamad Rafi Department of Pharmaceutics, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia; Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia; Research assistant at Pharmaceutical Management Graduate Program, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
Keywords: Antioxidant, Gynura procumbens, metabolomics, UHPLC Q-Orbitrap HRMS

Abstract

Gynura procumbens or commonly known as sambung nyawa is one of Indonesian medicinal plants. This plant has antioxidant activity, but no reported studies have been performed to identify antioxidant compounds from G. procumbens leaves using a metabolomics approach. In this study, we aimed to identify antioxidant compounds from G. procumbens by LC-MS/MS-based metabolomics. G. procumbens was extracted by maceration using ethanol p.a, 70%-, 50%-, 30% ethanol,  and water as the extracting solvent. Metabolite profiling using LC-MS/MS could putatively identify about 54 metabolites from all extracts. We found that flavonols are the most abundant group in all ethanol extracts. Antioxidant activity was determined using the DPPH method. The antioxidant activity of all extracts yielded IC50 values ranging 90.39 to 140.75 mg/L, indicating strong to medium activity. Antioxidant compound prediction was done by correlating metabolites profile and antioxidant activity using orthogonal partial least square-discriminant analysis (OPLS-DA). From the OPLS-DA, five compounds are predicted as antioxidant compounds, namely kaempferol 3-O-rutinoside, 4-hydroxybenzaldehyde, 4,5-dicaffeoylquinic acid, 3-dicaffeoylquinic acid, and 1 unknown compound. The five metabolites had a p-value (<0.05), fold change (>1.5), and variable importance in the projection (VIP) (>1.46), which indicated that these metabolites had a significant contribution to the antioxidant activity from G. procumbens leaves.

References

1. Afandi, A., Sadikun, A., & Ismail, S. (2014). Antioxidant properties of gynura procumbens extract and their inhibitory effects on two major human recombinant cytochrome p450s using a high throughout luminescence assay. Asian Journal of Pharmaceutical and Clinical Reseacrh, 7, 36-41.
2. Alhadrami, H. A., Sayed, A. M., El-Gendy, A. O., Shamikh, Y. I., Gaber, Y., Bakeer, W., Sheirf, N. H., Attia, E. Z., Shaban, G. M., Khalifa, B. A., Ngwa, C. J., Pradel, G., Rateb, M. E., Hassan, H. M., Alkhalifah, D. H. M., Abdelmohsen, U. R., & Hozzein, W. N. (2021). A metabolomic approach to target antimalarial metabolites in the Artemisia annua fungal endophytes. Scientific Reports, 11(1), 1–11. https://doi.org/10.1038/s41598-021-82201-8
3. Aziz, Z., Yuliana, N. D., Simanjuntak, P., Rafi, M., & Syamsudin. (2020). FTIR and HPLC-based metabolomics of yacon leaves extracts (Smallanthus sonchifolius [poepp & endl.] h. robinson) from two locations in Indonesia. Indonesian Journal of Chemistry, 20(3), 567–578. https://doi.org/10.22146/ijc.43453
4. Budiarti, E., Batubara, I., & Ilmiawati, A. (2019). Potensi Beberapa Ekstrak Tumbuhan Asteraceae sebagai Antioksidan dan Antiglikasi. Jurnal Jamu Indonesia, 4(3), 103–111. https://doi.org/10.29244/jji.v4i3.161
5. Cao, M. Y., Wu, J., Xie, C. Q., Wu, L., Gu, Z., Hu, J. W., & Xiong, W. (2022). Antioxidant and anti-inflammatory activities of Gynura procumbens flowers extract through suppressing LPS-induced MAPK/NF-κB signalling pathways. Food and Agricultural Immunology, 33(1), 511–529. https://doi.org/10.1080/09540105.2022.2098935
6. Chandradevan, M., Simoh, S., Mediani, A., Ismail, N. H., Ismail, I. S., & Abas, F. (2020). UHPLC-ESI-Orbitrap-MS Analysis of Biologically Active Extracts from Gynura procumbens (Lour.) Merr. And Cleome gynandra L. Leaves. Evidence-Based Complementary and Alternative Medicine, 2020. https://doi.org/10.1155/2020/3238561
7. Fan, M., Lian, W., Li, T., Fan, Y., Rao, Z., Li, Y., Qian, H., Zhang, H., Wu, G., Qi, X., & Wang, L. (2020). Metabolomics approach reveals discriminatory metabolites associating with the blue pigments from Vaccinium bracteatum thunb. Leaves at different growth stages. Industrial Crops and Products, 147(January 2019), 112252. https://doi.org/10.1016/j.indcrop.2020.112252
8. Heryanto, R., Putra, C. A., Khalil, M., Rafi, M., Putri, S. P., Karomah, A. H., & Batubara, I. (2023). Antioxidant Activity and Metabolite Profiling of Xylocarpus granatum Extracts Using Gas Chromatography–Mass Spectrometry. Metabolites, 13(2). https://doi.org/10.3390/metabo13020156
9. Ibrahim, M. H., Kong, Y. C., & Zain, N. A. M. (2017). Effect of cadmium and copper exposure on growth, secondary metabolites and antioxidant activity in the medicinal plant sambung nyawa (Gynura procumbens (Lour.) Merr). Molecules, 22(10). https://doi.org/10.3390/molecules22101623
10. Ji, Y. Bin, Wang, Y. S., Fu, T. T., Ma, S. Q., Qi, Y. D., Si, J. Y., Sun, D. A., & Liao, Y. H. (2019). Quantitative analysis of pyrrolizidine alkaloids in Gynura procumbens by liquid chromatography–tandem quadrupole mass spectrometry after enrichment by PCX solid-phase extraction. International Journal of Environmental Analytical Chemistry, 99(11), 1090–1102. https://doi.org/10.1080/03067319.2019.1616705
11. Kim, J., Lee, C. W., Kim, E. K., Lee, S. J., Park, N. H., Kim, H. S., Kim, H. K., Char, K., Jang, Y. P., & Kim, J. W. (2011). Inhibition effect of Gynura procumbens extract on UV-B-induced matrix-metalloproteinase expression in human dermal fibroblasts. Journal of Ethnopharmacology, 137(1), 427–433. https://doi.org/10.1016/j.jep.2011.04.072
12. Li, J. E., Wang, W. J., Zheng, G. D., & Li, L. Y. (2017). Physicochemical properties and antioxidant activities of polysaccharides from Gynura procumbens leaves by fractional precipitation. International Journal of Biological Macromolecules, 95, 719–724. https://doi.org/10.1016/j.ijbiomac.2016.11.113
13. March, R. E., & Miao, X. S. (2004). A fragmentation study of kaempferol using electrospray quadrupole time-of-flight mass spectrometry at high mass resolution. International Journal of Mass Spectrometry, 231(2–3), 157–167. https://doi.org/10.1016/j.ijms.2003.10.008
14. Mishra, S., Ankit, Sharma, R., Gogna, N., & Dorai, K. (2021). NMR-based metabolomic profiling of the differential concentration of phytomedicinal compounds in pericarp, skin and seeds of Momordica charantia (bitter melon). Natural Product Research, 36(1), 390–395. https://doi.org/10.1080/14786419.2020.1762190
15. Nurulita, N. A., Meiyanto, E., & Sugiyanto, S. (2011). Selectivity of Ethyl Acetate Fraction of Gynura Procumbens on Colon Cancer and Breast Cancer. Indonesian Journal of Cancer Chemoprevention, 2(3), 274. https://doi.org/10.14499/indonesianjcanchemoprev2iss3pp274-280
16. Perumal, V., Khatib, A., Uddin Ahmed, Q., Fathamah Uzir, B., Abas, F., Murugesu, S., Zuwairi Saiman, M., Primaharinastiti, R., & El-Seedi, H. (2021). Antioxidants profile of Momordica charantia fruit extract analyzed using LC-MS-QTOF-based metabolomics. Food Chemistry: Molecular Sciences, 2(June 2020), 4–11. https://doi.org/10.1016/j.fochms.2021.100012
17. Rafi, M., Karomah, A. H., Septaningsih, D. A., Trivadila, Rahminiwati, M., Prama Putri, S., & Iswantini, D. (2022). LC-MS/MS based metabolite profiling and lipase enzyme inhibitory activity of Kaempferia angustifolia Rosc. with different extracting solvents. Arabian Journal of Chemistry, 15(11), 104232. https://doi.org/10.1016/j.arabjc.2022.104232
18. Rivera-Pérez, A., Romero-González, R., & Garrido Frenich, A. (2021). Application of an innovative metabolomics approach to discriminate geographical origin and processing of black pepper by untargeted UHPLC-Q-Orbitrap-HRMS analysis and mid-level data fusion. Food Research International, 150. https://doi.org/10.1016/j.foodres.2021.110722
19. Stevenson, R., & De Bo, G. (2017). Controlling Reactivity by Geometry in Retro-Diels-Alder Reactions under Tension. Journal of the American Chemical Society, 139(46), 16768–16771. https://doi.org/10.1021/jacs.7b08895
20. Xu, H., Li, Z., Tong, Z., He, F., & Li, X. (2020). Metabolomic analyses reveal substances that contribute to the increased freezing tolerance of alfalfa (Medicago sativa L.) after continuous water deficit. BMC Plant Biology, 20(1), 1–15. https://doi.org/10.1186/s12870-019-2233-9
Published
2024-12-17
How to Cite
Putri, A. C., Ilmiawati, A., & Rafi, M. (2024). Identification of Antioxidant Compounds from Gynura procumbens Using LC-MS/MS-Based Metabolomics. Indonesian Journal of Pharmacy, 35(4), 680–689. https://doi.org/10.22146/ijp.10382
Section
Research Article