Rekonstruksi Alat Skrining Diskalkulia untuk Siswa Sekolah Dasar

https://doi.org/10.22146/gamajpp.32312

Nikmah Sofia Afiati(1*), Saifuddin Azwar(2)

(1) Fakultas Psikologi Universitas Gadjah Mada
(2) Fakultas Psikologi Universitas Gadjah Mada
(*) Corresponding Author

Abstract


Result of some studies reported that 3%-14% of school age students are
diagnosed as dyscalculia. The early step to diagnose children with dyscalculia is by using
a screening test. The construction of the screening test by previous researchers has not
been able to result a satisfactory tool. This study aims to reconstruct the dyscalculia
screening tool (TSD/Tes Skrining Diskalkulia), which developed in order to determine
elementary school students that risk for dyscalculia. The participants were 367 students
from 1 st to 4 th grade selected from 5 different school in Magelang Regency. Result showed
that the new structure of the dyscalculia screening tool has a good content validity and
construct validity. This tool also has good reliability which is 0.864 with low standard
error of measurement. It showed that 69 items that are constructed has good psychometric
properties.

Keywords


dyscalculia; screening test; reliability; validity

Full Text:

PDF


References

Adler, B. (2001). What is dyscalculia? Malmo: Cognitive Centre Ostergatan.

Azwar, S. (2016a). Konstruksi tes kemampuan kognitif, Edisi Pertama. Yogyakarta: Pustaka Pelajar.

Azwar, S. (2016b). Penyusunan skala psikologi, Edisi Kedua. Yogyakarta: Pustaka Pelajar.

Azwar, S. (2015a). Reliabilitas dan validitas, Edisi Kelima. Yogyakarta: Pustaka Pelajar.

Azwar, S. (2015b). Tes prestasi: Fungsi dan pengembangan pengukuran prestasi belajar, Edisi Kedua. Yogyakarta: Pustaka Pelajar.

Barbaresi, W. J., Katusic, S. K., Colligan, R. C., Weaver, A. L., Jacobsen, S. J. (2005). Math learning disorder: Incidence in a population-based birth cohort, Ambul Pediatric, 5, 281-289. doi: 10.1367/A04-209R.1

Bariroh, N. (2016). Konstruksi alat skrining diskalkulia untuk siswa sekolah dasar (Tesis tidak dipublikasikan). Fakultas Psikologi Universitas Gadjah Mada, Yogyakarta.

Berteletti, I., Lucangeli, D., Piazza, M., Dehaene, S., & Zorzi, M. (2010). Numerical estimation in preschoolers. Developmental Psychology, 46(2), 545-551. doi: 10.1037/a0017887

Booth, J. L., & Siegler, R. S. (2008). Numerical magnitude representations influence arithmetic learning. Child Development, 79(4), 1016-1031. doi: 10.1111/j.1467-8624.2008.01173.x

Butterworth, B. (2009). Dyscalculia: Causes, identification, intervention and recognition. Paper presented at the Dyscalculia and Maths Learning Difficulties, Holiday Inn, Bloomsbury (nr. Euston Station) London.

Butterworth, B. (2003). Dyscalculia screener: Highlighting pupils with specifics learning difficulties in maths, age 6-14 years. London: NFER-Nelson.

Butterworth, B. (2002). Screening for dyscalculia: A new approach, SEN presentation summary. Mathematical Difficulties: Psychology, Neuroscience, and Intervention. London: NFER-Nelson.

Butterworth, B. (2005). The development of arithmetical abilities. Journal of Child Psychology and Psychiatry, 46(1), 3-18. doi: 10.1111/j.1469-7610.2005.00374.x

Dehaene, S., Piazza, M., Pinel, P., & Cohen, L. (2003). Three parietal circuits for number processing. Cognitive Neuropsychology, 20, 487–506. doi: 10.1080/02643290244000239

Dehaene, S. (1997). The number sense. How the mind creates mathematics. New York: Oxford University Press.

Dehaene, S. (2011). The number sense. How the mind creates mathematics. New York: Oxford University Press.

Delazer, M., Domahs, F., Bartha, L., Brenneis, C., Lochy, A., Trieb, T., & Benke, T. (2003). Learning complex arithmetic–an fMRI study. Brain Res Cogn Brain Res, 18(1), 76-88.

Departemen Pendidikan Nasional. (2005). Kamus besar bahasa Indonesia, Edisi Ketiga. Jakarta: Balai Pustaka.

Desoete, A; Ceulemans, A; De Weerdt, F; Pieters, S. (2012). Can we predict mathematical learning disabilities from symbolic and non-symbolic comparison tasks in kindergarten? Findings from a longitudinal study. The British Journal of Educational Psychology. 82, 64-81. doi: 10.1348/2044-8279.002002.

Desoete, A; Roeyners, H, & De Clercq, A. (2004) Children with mathematics learning disabilities in Belgium. Journal of Learning Disabilities, 37(1), 50–61. doi: 10.1177/ 00222 1940 4037 0010601

Emerson, J., & Babtie, P. (2010). The dyscalculia assessment. London: Continuum International Publishing Group.

Feigenson, L., Dehaene, S., & Spelke, E. (2004a). Core systems of number. Trends in Cognitive Sciences, 8(7), 307-314. doi: 10.1016/j.tics.2004.05.002

Feigenson, L., Dehaene, S., & Spelke, E. (2004b). Origins and endpoints of the core systems of number. Reply to Fias and Verguts. Trends in Cognitive Sciences, 8(10), 448-449. doi: 10.1016/j.tics.2004.08.010

Geary, D. C., Bailey, D. H., & Hoard, M. K. (2009). Predicting mathematical achievement and mathematical learning disability with a simple screening tool: The number sets test. Journal of Psychoeducational Assessment, 27, 265-279. doi: 10.1177/0734282908330592

Geary, D. C., Hoard, M. K., Byrd-Craven, J., Nugent, L., & Numtee, C. (2007). Cognitive mechanisms underlying achievement deficits in children with mathematical learning disability. Child Development, 78, 1343-1359. doi: 10.1111/j.1467-8624.2007.01069.x

Geary, D. C., & Hoard, M. K. (2001). Numerical and arithmetical deficits in learning-disabled children: Relation to dyscalculia and dyslexia. Aphasiology, 15(7), 635–647. doi: 10.1080/02687040143000113

Geary, D. C. (2004). Mathematics and learning disabilities. Journal of Learning Disabilitie 37(1), 4–15. doi: 10.1177/00222194040370010201

Gilmore, C. K., McCarthy, S. E., & Spelke, E. S. (2010). Non-symbolic arithmetic abilities and mathematics achievement in the first year of formal schooling. Cognition, 115, 394-406. doi: 10.1016/j. cognition. 2010. 02.002

Girelli, L., Lucangeli, D., & Butterworth, B. (2000). The development of automaticity in accessing number magnitude. Journal of Exp Child Psychology, 76(2), 104-122. doi: 10.1006/jecp.2000.2564

Grégoire, J., Noël, M. P., & Van Nieuwenhoven, C. (2015). Tedi-Math manual: Test para el diagnoetico de las competencias basicas en matematicas. Madrid: TEA Ediciones.

Ischebeck, A., Zamarian, L., Siedentopf, C., Koppelstatter, F., Benke, T., Felber, S., & Delazer, M. (2006). How specifically do we learn? Imaging the learning of multiplication and subtraction. Neuroimage, 30(4), 1365- 1375. doi: 10.1016/j. neuroimage. 2005.11.016

Izard, V., Pica, P., Spelke, E., & Dehaene, S. (2008). Exact equality and successor function: Two key concepts on the path towards understanding exact numbers. Philosophical Psychology, 21(4), 491-505. doi:  10.1080/ 095150 80802285354

Jordan, N. C., Glutting, J., & Ramineni, C. (2008). A Number sense assessment tool for identifying children at risk for mathematical difficulties. In A. Dowker (Eds.), Mathematical difficulties: Psychology and intervention (45-58). San Diego, CA: Academic Press.

Jordan, N. C., Glutting, J., & Ramineni, C. (2010). The importance of number sense to mathematics achievement in first and third grades. Learning and Individual Differences, 20, 82-88. doi:  10.1016/j.lindif.2009.07.004

Jordan, N. C., Kaplan, D., Locuniak, M. N., & Ramineni, C. (2007). Predicting first-grade math achievement developmental number sense trajectories. Learning Disabilities Research & Practice, 22, 36-46.

Klauer, K. J. (1992). Teaching inductive thinking to highly able children. European Journal for High Ability, 3, 164-180. doi: 10.1080/ 093744 5920 030205

Landerl, K., Bevan, A., & Butterworth, B. (2004). Developmental dyscalculia and basic numerical capacities: a study of 8-9-year-old students. Cognition, 93, 99–125. doi: 10.1016/j.cognition.2003.11.004

Laski, E. V., & Siegler, R. S. (2007). Is 27 a Big Number? Correlational and Causal Connections Among Numerical Categorization, Number Line Estimation, and Numerical Magnitude Comparison. Child Development, 78(6), 1723-1743. doi: 10.1111/j.1467-8624.2007.01087.x.

Lemer, C., Dehaene, S., Spelke, E., & Cohen, L. (2003). Approximate quantities and exact number words: dissociable systems. Neuropsychologia, 41(14), 1942-1958. doi: 10.1016/S0028-3932(03)00123-4

Lewis, C., Hitch, G. J., & Walker, P. (1994). The prevalence of specific arithmetic difficulties and specific reading difficulties in 9- to 10-year-old boys and girls. Journal of Child Psychology and Psychiatry, 35(2), 283-292. doi: 10.1111/j.1469-7610.1994.tb01162.x

Libertus, M. E., & Brannon, E. M. (2009). Behavioral and neural basis of number sense in infancy. Association for Psychological Science, 18, 346-351. doi: 10.1111/j.1467-8721.2009.01665.x

Marbun, B. N. (1996). Kamus Politik. Jakarta: Pustaka Sinar Harapan.

Mazzocco, M. M. M., & Myers, G. F. (2003). Complexities in identifying and defining mathematics learning disability in primary school-age years. Ann Dyslexia, 53(1), 218-253. doi:  10.1007/s11881-003-0011-7

Mazzocco, M. M. M., Feigenson, L., & Halberda, J. (2011). Impaired acuity of the approximate number system underlies mathematical learning disability (Dyscalculia). Child Development, 82(4), 1224-1237. doi: 10.1111/j.1467-8624.2011.01608.x.

Moeller, K., Neuburger, S., Kaufmann, L., Landerl, K., & Nuerk, H. C. (2009). Basic number processing deficit in developmental dyscalculia: Evidence from eye tracking. Cognitive Development, 24, 371-386. doi: 10.1016/j.cogdev.2009.09.007

Nys, J., & Content, A. (2010). Complex mental arithmetic: The contribution of number sense. Canadian Journal of Experi mental Psychology, 64, 215-220. doi: 10.1037/a0020767

Olkun, S., Altun, A., Şahin, S. G., Denizli, Z. A. (2015). Deficits in basic number competencies may cause low numeracy in primary school children. Education and Science, 40(177), 141-159. doi: 10.15390/EB.2015.3287

Olkun, S., Altun, A., Şahin, S. G., & Kaya, G. (2016). Psychometric properties of a screening tool for elementary school student’s math learning disorder risk. International Journal of Learning, Teaching and Educational Research, 15(12), 48-66.

Olkun, S., & Denizli, Z. A. (2015). Using basic number processing tasks in determining students with mathematics disorder risk. The Journal of Psychiatry and Neurological Sciences, 28(1), 47-57. doi: 10.5350/DAJPN2015280105

Ostergren, R., & Traff, U. (2013). Early number knowledge and cognitive ability affect early arithmetic ability. Journal of Experimental Child Psychology, 115, 405-421. doi: 10.1016/j.jecp.2013.03.007

Rathvon, N. (2004). Early Reading Assesment: A Practitioner’s Handbook. New York: The Guilford Press.

Rubinsten, O., & Henik, A. (2006). Double dissociation of functions in developmental dyslexia and dyscalculia. Journal of Educational Psychology, 98(4), 854-867. doi: 10.1037/0022-0663.98.4.854

Shalev R, Gross-Tsur V. (2001). Developmental dyscalculia. Pediatric Neurology, 24, 337-342.

Shalev, R. S., Auerbach, J., Manor, O., & Gross-Tsur, V. (2000). Developmental dyscalculia: Prevalence and prognosis. Europe Child Adolescence Psychiatry, 9, 58-64.

Trott, C., & Beacham, N. (2007). DyscalculiUM: A First-Line Screener for Dyscalculia in Higher Education. Diunduh dari: www.brainhe.com/staff/types/ documents/DMU06.ppt.

Von Aster, M. (2000). Developmental cognitive neuropsychology of number processing and calculation: Varieties of developmental dyscalculia. European Child & Adolescent Psychiatry, 9(2), 41-57. doi: 10.1007/s007870070008

Wilson, A. J., & Dehaene, S. (2007). Number sense and developmental dyscalculia. Cognitive Neuroimaging.



DOI: https://doi.org/10.22146/gamajpp.32312

Article Metrics

Abstract views : 245 | views : 264

Refbacks

  • There are currently no refbacks.


Copyright (c) 2018 Gadjah Mada Journal of Professional Psychology

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Gadjah Mada Journal of Professional Psychology  (GamaJPP) Terindeks di :
   

Fakultas Psikologi Universitas Gadjah Mada
Jl. Sosio Humaniora No. 1, Bulaksumur, Yogyakarta. 55781
email:gamajpp.psikologi@ugm.ac.id | http://jurnal.ugm.ac.id/gamajpp