Ethanolic extract of Dutch eggplants (Solanum betaceum) protects spermatozoa motility exposed to lead acetate

https://doi.org/10.19106/JMedSci005204202002

Rima Wirenviona(1*), Reny I'tishom(2), Siti Khaerunnisa(3)

(1) Master of Reproductive Health, Postgraduate Program, Faculty of Medicine, Universitas Airlangga, Surabaya
(2) Department of Medical Biology, Faculty of Medicine, Universitas Airlangga, Surabaya
(3) Department of Medical Biochemistry, Faculty of Medicine, Universitas Airlangga, Surabaya
(*) Corresponding Author

Abstract


Lead is a toxic material that can have negative effects on reproductive organs. Lead exposure reduces the activity of endogenous antioxidant enzymes and increases the number of oxidants in the body. High free radicals will affect spermatogenesis and result in decreased motile spermatozoa. Antioxidants are known to protect the motility of spermatozoa, and adequate antioxidants can be found in Dutch eggplants (Solanumbetaceum). This study aimed to evaluate the effect of S. betaceum on spermatozoa motility after exposure to lead acetate. This study is a true experimental design with a randomized post-test-only control group design. Forty male Balb/C mice 12 weeks old were randomly divided into 5 groups: two control groups (C0, C1) and three treatment groups (T1, T2, T3).The C0 received distilled water, and the C1 received 75 mg/kg BW lead acetate. The T1, T2 and T3 received 100, 200 and 400 mg/kg BW of S. betaceum, respectively, an hour before exposed lead acetate. The data were analyzed using one-way ANOVA with a significant level of p <0.05. A significantly increasein the mean total motility of spermatozoa in T1, T2, and T3 was reported.This study indicates that S. betaceum have a protective effect on spermatozoa motility when exposed to lead acetate.


Keywords


Solanum betaceum; motility; spermatozoa; lead acetate; mice;

Full Text:

PDF


References

  1. Agarwal A, Virk G, Plessis SS. Effect of oxidative stress on male reproduction. The World J Mens Health 2014; 32(1):1-17. https://doi.org/10.5534/wjmh.2014.32.1.1
  2. Najafi TF, Roudsari RL, Namvar F, Ghanbarabadi VG, Talasaz ZH, Esmaeli M. Air pollution and quality of sperm. Iranian Red Crescent Med J 2015; 17(4):e26930 https://doi.org/10.5812/ircmj.17(4)2015.26930
  3. Bierkens J, Smolders R, Van Holderbeke M, Cornelis C. Predicting blood lead levels from current and past environmental data in Europe. Sci Total Environ 2011; 409(23):5101–10. https://doi.org/10.1016/j.scitotenv.2011.08.034
  4. Kumar S. Occupational and environmental exposure to lead and reproductive health ımpairment. Indian J Occup Environ Med 2018; 22(3):128-37. https://doi.org/10.4103/ijoem.IJOEM_126_18
  5. Vigeh M, Smith DR, Hsu P. How does lead induce male infertility?. Iran J ReproMed 2011; 9(1):1-8.
  6. Ayala A, Muñoz MF, Argüelles S. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell Longev 2014; 1-31. https://doi.org/10.1155/2014/360438
  7. Walters JLH, Gadella BM, Sutherland JM, Nixon B, Bromfield EG. Shining a light on lipids and lipid-modulating enzymes in the male germline. J Clin Med 2020; 9(327):1-25. https://doi.org/10.3390/jcm9020327
  8. Nowicka-Bauer K &Nixon B. Molecular changes induced by oxidative stress that impair human sperm motility. Antioxidants 2020; 9(134):1-22. https://doi.org/10.3390/antiox9020134
  9. Ross C, Morriss A, Khairy M, Khalaf Y, Braude P, Coomarasamy A, El-Toukhy T. A systematic review of the effect of oral antioxidants on male infertility. Reprod Biomed Online2010; 20(6): 711–23. https://doi.org/10.1016/j.rbmo.2010.03.008
  10. Schotsmans WC, East A, Woolf A. Tamarillo (Solanum betaceum Cav.).In: Yahia EM ed. Postharvest Biology and Technology of Tropical and Subtropical Fruits. Cambridge UK: Wood Head Publishing, 2011. pp. 427–441. https://doi.org/10.1533/9780857092618.427
  11. Durant AA, Rodríguez C, Santana AI, Herrero C, Rodríguez JC JC, Gupta MP. Analysis of volatile compounds from Solanumbetaceum cav. fruits from panama by head-space micro extraction. Rec Nat Prod 2013; 7(1):15-26.
  12. Kurutas EB. The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: current state. Nutr J 2016; 15(71):1-22. https://doi.org/10.1186/s12937-016-0186-5
  13. Lobo V, Patil A, Phatak A, Chandra N. Free radicals, antioxidants and functional foods: impact on human health. Pharmacogn Rev 2010; 4(8):118-26. https://doi.org/10.4103/0973-7847.70902
  14. Khaerunnisa S, Kusumastuti K, Mustika A, Aminah NS, Suhartati S. Mechanism of Solanum betaceum to prevent memory impairment in cigarette smoke-exposed rat. Int JApp Pharm 2019; 11(3):25-9. https://doi.org/10.22159/ijap.2019.v11s3.M1024
  15. Ruiz-Cruz S, Chaparro-Hernández S, Hernández‐ Ruiz KL, Cira‐Chávez LA, Estrada‐Alvarado MI, Ortega LEG, et al. Flavanoids: important biocompounds in food. In: Justino G editors, Flavonoids: From Biosynthesis to Human Health. Intech Open 2017; 16:353-369. https://doi.org/10.5772/67864
  16. Kaur, S. and Mondal, P. Study of total phenolic and flavonoid content, antioxidant activity and antimicrobial properties of medicinal plants. J Microbiol Exp 2014; 1(1):23–8. https://10.15406/jmen.2014.01.00005
  17. Diep T, Pook C, Yoo M. Phenolic and anthocyanin compounds and antioxidant activity of tamarillo (Solanumbetaceum cav.). Antioxidants 2020; 9(169):1-20. https://doi.org/10.3390/antiox9020169
  18. Priyadarsini KI, Khopde SM, Kumar S, Mohan H. Free radical studies of ellagic acid, a natural phenolic antioxidant. J Agric Food Chem 2002; 50:2200-6. https://10.1021/jf011275g
  19. Flora G, Gupta D, Tiwari A. Toxicity of lead: a review with recent up date. Interdiscip Toxicol 2012; 5(2):47-58. https://doi.org/10.2478/v10102-012-0009-2
  20. Poljsak B, Šuput D, Milisav I. Achieving the balance between ros and antioxidants: when to use the synthetic antioxidants. Oxid Med Cell Longev 2013; 1-11. https://doi.org/10.1155/2013/956792
  21. Alahmar AT. Role of oxidative stress in male infertility. J Hum Repro Sci 2019; 12(1):4-18. https://doi.org/10.4103/jhrs.JHRS_150_18
  22. Sabeti P, Pourmasumi S, Rahiminia T, Akyash F, Talebi AR. Etiologies of sperm oxidative stress. Int J Repro Biomed 2016; 14(4):231-240.
  23. Piomboni P, Focarelli R, Stendardi A, Freeamosca A, Zara V. The role of mitochondria in energy production for human sperm motility. Int J Androl 2012; 35:109-124. https://doi.org/10.1111/j.1365-2605.2011.01218.x
  24. Mohri H, Inaba K, Ishjima S, Baba SA. Tubulin-dynein system in flagellar and ciliary movement. Proc Jpn Acad Ser B Phys Biol Sci 2012; 88(8):397-415. https://doi:10.2183/pjab.88.397
  25. Wagner H, Cheng JW, Ko EY. Role of reactive oxygen species in male infertility. Arab J Urol 2018; 16(1):35-43. https://doi.org/10.1016/j.aju.2017.11.001
  26. Gandhi J, Hernandez RJ, Chen A, Smith NL, Sheynkin YR, Joshi G, et al. Impaired hypothalamic-pituitary-testicular axis activity, spermatogenesis, and sperm function promote infertility in males with lead poisoning. Zygote 2017; 25(02):103-10. https://doi.org/10.1017/S0967199417000028
  27. Cocuzza M, Sikka SC, Athayde KS, Agarwal A. Clinical relevance of oxidative stress and sperm chromatin damage in male infertility: an evidence based analysis. Int Braz J Urol 2007; 33(5):603-21. https://doi.org/10.1590/S1677-55382007000500002
  28. Aguilar TAF, Navarro BCH, Pérez JAM. Endogenous antioxidants: areview of their role in oxidative stress. In: Moralez-Gonzales JA, Moralez-Gonzalez A, Madrigal-Santillan EO editors.A master regulator of oxidative stress the transcription factor Nrf2. In Tech Open 2016. http://dx.doi.org/10.5772/62743
  29. Asih ARA, Manuaba IBP, Berata K, Satriyasa BK. The flavonoid glycosides antioxidant from terong belanda (Solanum betaceum). Biomed Pharmacol J 2018; 11(4). https://doi.org/10.13005/bpj/1593
  30. Tu¨rk G, So¨nmez M, Aydin M, Yu¨ce A, Gu¨r S, Yu¨kselM, et al. Effects of pomegranate juice consumption on sperm quality, spermatogenic cell density, antioxidant activity and testosterone level in male rats. Clin Nutr 2008; 27:289-96. https://doi.org/10.1016/j.clnu.2007.12.006
  31. Martin-Hidalgo D, Bragado MJ, Batista AR, Oliveira PF, Alves MG. Antioxidants and male fertility: from molecular studies to clinical evidence. Antioxidants 2019; 8(4):1-22. https://doi.org/10.3390/antiox8040089
  32. Dey S, Brothag C, Vijayaraghavan S. Signaling enzymes required for sperm maturation and fertilization in mammals. Front Cell Dev Biol 2019; 7(341):1-15. https:doi.org/10.3389/fcell.2019.00341
  33. Ahmadi S, Bashiri Rm Ghadiri-Anari A, Nadjarzadeh A. Antioxidant supplements and semen parameters. Int J Reprode Biomed 2016; 14(12):729-36.
  34. Dutta S, Majzoub A, Agarwal A. Oxidative stress and sperm function. Arab J Urol 2019; 17(2):87-97. https://doi.org/10.1080/2090598X.2019.1599624



DOI: https://doi.org/10.19106/JMedSci005204202002

Article Metrics

Abstract views : 1802 | views : 1970




Copyright (c) 2020 Rima Wirenviona, Reny I'tishom, Siti Khaerunnisa

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

PODOMORO138 SEDAYU138 JALURDEWA MERAHBET