Role of nuclear factor-κB (NF-κB) on mind body interventions (MBIs) in patients with systemic lupus erythematosus (SLE)

https://doi.org/10.19106/JMedSci005203202008

Deddy Nur Wachid Achadiono(1*), Nyoman Kertia(2), Achmad Husain Asdie(3), Bambang Udji Djoko Riyanto(4)

(1) Doctoral Programmme Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada / Dr. Sardjito Hospital, Yogyakarta
(2) Departement of Internal Medicine, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada/Dr. Sardjito Hospital, Yogyakarta
(3) Departement of Internal Medicine, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada/Dr. Sardjito Hospital, Yogyakarta
(4) Department of Ear, Nose, Throat and Head–Neck, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada / Dr.Sardjito General Hospital, Yogyakarta, Indonesia
(*) Corresponding Author

Abstract


Mind body interventions (MBIs) are exercise that emphasizes the use of brain and body to assist the healing process and to manage symptoms in order to improve wellbeing. The MBIs are expected to be a supporting therapy for patients with autoimmune disease such as systemic lupus erythematosus (SLE), to improve patients’ activities, reduce fatigue, stress, and depression.One type of MBIs that could be potentially applied in Indonesia is latihan pasrah diri (LPD). Studies showed that MBIs can affect the expression of pro- and anti-inflammatory mediators. Nuclear factor-κB(NF-κB) is a transcription factor that controls gene expression related to many physiological responses including inflammation, proliferation, cell differentiation, and apoptosis. NF-κB can be activated through canonical and alternative pathway. This literature review aimed to identify the role of NF-κB as consequence of practicing MBIs in SLE patients. We searched for relevant publications in the MEDLINE/Pub Med and Google Scholar with no date restriction. This review revealed that abnormal NF-κB could mediate autoimmune condition in SLE pathogenesis. MBIs are expected to be a supportive treatment that can help to control NF-κB expression in SLE patients. LPD as an Indonesian original MBI is expected as a suitable techniques that can be applied in patients with SLE in Indonesia. Further studies on the effect of LPD on NF-κB expression in patients with SLE need to be further explored.


Keywords


mind body interventions; Latihan Pasrah Diri; NF-κB; SLE; therapy;

Full Text:

PDF


References

  1. Bower JE, Irwin MR. Mind-body therapies and control of inflammatory biology: A descriptive review. Brain Behav Immun 2016; 51:1-11. https://doi.org/10.1016/j.bbi.2015.06.012
  2. Dharma DA. Pengaruh latihan pasrah diri terhadap control gula darah pada penderita diabetes mellitus tipe 2 dengan gejala depresi [Thesis]. Universitas Gadjah Mada; 2006.
  3. Morgan N, Irwin MR, Chung M, Wang C. The effects of mind-body therapies on the immune system: Meta-analysis. PLoS One 2014; 9(7):1-14. https://doi.org/10.1371/journal.pone.0100903
  4. Buric I, Farias M, Jong J, Mee C, Brazil IA. What is the molecular signature of mind-body interventions? A systematic review of gene expression changes induced by meditation and related practices. Front Immunol 2017; 8:670. https://doi.org/10.3389/fimmu.2017.00670
  5. Baeuerle PA, Henkel T. Function and activation of NF-kappa B in the immune system. Annu Rev Immunol 1994; 12(1):141-79. https://doi.org/10.1146/annurev.iy.12.040194.001041
  6. Karin M, Yamamoto Y, Wang QM. The IKK NF-κB system: A treasure trove for drug development. Nat Rev Drug Discov 2004; 3(1):17-26. https://doi.org/10.1038/nrd1279
  7. Westbrook AM, Szakmary A, Schiestl RH. Mechanisms of intestinal inflammation and development of associated cancers: Lessons learned from mouse models. Mutat Res 2011; 705(1):40-59.https://doi.org/10.1016/j.mrrev.2010.03.001
  8. Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell 2006; 124(4):783-801. https://doi.org/10.1016/j.cell.2006.02.015
  9. Karin M, Lawrence T, Nizet V. Innate immunity gone awry: Linking microbial infections to chronic inflammation and cancer. Cell 2006; 124(4):823-35. https://doi.org/10.1016/j.cell.2006.02.016
  10. Ghosh S, Karin M. Missing pieces in the NF-kB puzzle. Cell 2002; 109(Suppl):S81-96. https://doi.org/10.1016/S0092-8674(02)00703-1
  11. Karin M, Ben-neriah Y. Phosphorylation meets ubiquination: the control of NF-kB activity. Annu Rev Immunol 2000; 18:621-63. https://doi.org/10.1146/annurev.immunol.18.1.621
  12. Senftleben U, Cao Y, Xiao G, Greten FR, Krahn G, Bonizzi G, et al. Activation by IKKa of a second, evolutionary conserved, NF-kB signalling pathway. Science 2001; 293(5534):1495-9. https://doi.org/10.1126/science.1062677
  13. Bonizzi G, Bebien M, Otero DC, Johnson-Vroom KE, Cao Y, Vu D, et al. Activation of IKKα target genes depends on recognition of specific κB binding sites by RelB:p52 dimers. EMBO J 2004; 23(21):4202-10. https://doi.org/10.1038/sj.emboj.7600391
  14. Novack DV, Yin L, Hagen-Stapleton A, Schreiber RD, Goeddel DV, Ross FP, et al. The IκB function of NF-κB2 p100 controls stimulated osteoclastogenesis. J Exp Med 2003; 198(5):771-81. https://doi.org/10.1084/jem.20030116
  15. Matsushima A, Kaisho T, Rennert PD, Nakano H, Kurosawa K, Uchida D, et al. Essential role of nuclear factor (NF)-kappaB-inducing kinase and inhibitor of kappaB (IkappaB) kinase alpha in NF-kappaB activation through lymphotoxin beta receptor, but not through tumor necrosis factor receptor I. J Exp Med 2001; 193(5):631-6. https://doi.org/10.1084/jem.193.5.631
  16. Dejardin E, Droin NM, Delhase M, Haas E, Cao Y, Makris C, et al. The lymphotoxin-beta receptor induces different patterns of gene expression via two NF-kappaB pathways. Immunity 2002; 17(4):525-35. https://doi.org/10.1016/S1074-7613(02)00423-5
  17. Zandi E, Rothwarf DM, Delhase M, Hayakawa M, Karin M. The IkB kinase complex (IKK) contains two kinase subunits, IKKb1 and IKKb2, necessary for IkB phosphorylation and NFkB activation. Cell 1997; 91(2):243-52. https://doi.org/10.1016/S0092-8674(00)80406-7
  18. Holgate ST. Cytokine and anti-cytokine therapy for the treatment of asthma and allergic disease. Cytokine 2004; 28(4-5):152-7. https://doi.org/10.1016/j.cyto.2004.07.010
  19. Williams RO, Paleolog E, Feldmann M. Cytokine inhibitors in rheumatoid arthritis and other autoimmune diseases. Curr Opin Pharmacol 2007; 7(4):412-7. https://doi.org/10.1016/j.coph.2007.06.001
  20. Tak PP, Firestein GS. NF-κB in defense and disease NF-κB: a key role in inflammatory diseases. J Clin Invest 2001; 107(1):7-11. https://doi.org/10.1172/JCI11830
  21. Aupperle KR, Bennett BL, Han Z, Boyle DL, Manning AM, Firestein GS. NF-kB regulation by IB kinase-2 in rheumatoid arthritis synoviocytes. J Immunol 2001; 166(4):2705-11. https://doi.org/10.4049/jimmunol.166.4.2705
  22. Beg AA, Baltimore D. An essential role for NF-kB in preventing TNF-a-induced cell death. Science 1996; 274(5288):782-4. https://doi.org/10.1126/science.274.5288.782
  23. Bohuslav J, Kravchenko VV, Parry GCN, Erlich JH, Gerondakis S, Mackman N, et al. Rapid publication regulation of an essential innate immune response by the p50 subunit of NF-kB. J Clin Invest 1998; 102(9):1645-52. https://doi.org/10.1172/JCI3877
  24. Kang SM, Tran AC, Grilli M, Lenardo MJ. NF-kappa B subunit regulation in nontransformed CD4+ T lymphocytes. Science 1992; 256(5062):1452-6. https://doi.org/10.1126/science.1604322
  25. Greten FR, Arkan MC, Bollrath J, Hsu LC, Goode J, Miething C, et al. NF-κB is a negative regulator of IL-1β secretion as revealed by genetic and pharmacological inhibition of IKKβ. Cell 2007; 130(5):918-31. https://doi.org/10.1016/j.cell.2007.07.009
  26. Lawrence T, Gilroy DW. Chronic inflammation: A failure of resolution? Int J Exp Pathol 2007; 88(2):85-94. https://doi.org/10.1111/j.1365-2613.2006.00507.x
  27. Lawrence T, Gilroy DW, Colville-Nash PR, Willoughby DA. Possible new role for NF-kappaB in the resolution of inflammation. Nat Med 2001; 7(1078-8956):1291-7. https://doi.org/10.1038/nm1201-1291
  28. Park JM, Greten FR, Wong A, Westrick RJ, Arthur JS, Otsu K, et al. Signalling pathways and genes that inhibit pathogen-induced macrophage apoptosis-CREB and NF-κB as key regulators. Immunity 2005; 23(3):319-29. https://doi.org/10.1016/j.immuni.2005.08.010
  29. Basak S, Shih VF-S, Hoffmann A. Generation and activation of multiple dimeric transcription factors within the NF-kB signalling system. Mol Cell Biol 2008; 28(10):3139-50. https://doi.org/10.1128/MCB.01469-07
  30. Hayden MS, Ghosh S. NF-κB in immunobiology. Cell Res 2011; 21:223-44. https://doi.org/10.1038/cr.2011.13
  31. Fernandez-Gutierrez B, Miguel S De, Morado C, Jover JA. Defective early T and T-dependent B cell activation in systemic lupus erythematosus. Lupus 1998; 7:314-422. https://doi.org/10.1191/096120398678920226
  32. Mishra RK. Involvement of NF-κB signalling pathway in the pathogenesis of systemic lupus erythematosus. Nephrology 2016; 2(1):9-13. https://doi.org/10.17140/NPOJ-2-112
  33. Zhang H, Sun SC. NF κB in inflammation and renal diseases. Cell Biosci 2015:1-12. https://doi.org/10.1186/s13578-015-0056-4
  34. Zhao J, Zhang H, Huang Y, Wang H, Wang S, Zhao C, et al. International Immunopharmacology Bay11-7082 attenuates murine lupus nephritis via inhibiting NLRP3 in flammasome and NF-κB activation. Int Immunopharmacol 2013; 17(1):116-22. https://doi.org/10.1016/j.intimp.2013.05.027
  35. Caster DJ, Korte EA, Nanda SK, Mcleish KR, Oliver RK, Sell RTG. ABIN1 dysfunction as a genetic basis for lupus nephritis. J Am Soc Nephrol 2018; 24(11):1743-54. https://doi.org/10.1681/ASN.2013020148
  36. Ma A, Malynn BA. A20: linking a complex regulator of ubiquitylation to immunity. Nat Rev Immunol 2013; 12(11):774-85. https://doi.org/10.1038/nri3313
  37. Brightbill HD. NF-κB inducing kinase is a therapeutic target for systemic lupus erythematosus. Nat Commun2018; 9:1-14. https://doi.org/10.1038/s41467-017-02672-0
  38. Lavretsky H, Alstein LL, Olmstead RE, Ercoli LM, Riparetti-Brown M, Cyr NS, et al. Complementary use of tai chi chih augments escitalopram treatment of geriatric depression: A randomized controlled trial. Am J Geriatr Psychiatry 2011; 19(10):839-50. https://doi.org/10.1097/JGP.0b013e31820ee9ef
  39. Irwin MR, Olmstead R, Breen EC, Witarama T, Carrillo C, Sadeghi N, et al. Tai chi, cellular inflammation, and transcriptome dynamics in breast cancer survivors with insomnia: A randomized controlled trial. J Natl Cancer Inst 2014; 50:295-301. https://doi.org/10.1093/jncimonographs/lgu028
  40. Cole SW. Human Social Genomics. PLoS One 2014; 10(8):4-10. https://doi.org/10.1371/journal.pgen.1004601
  41. Irwin MR, Olmstead R, Carrillo C, Sadeghi N, Breen EC, Witarama T, et al. Cognitive behavioral therapy versus tai chi for late life insomnia and inflammatory risk: A randomized controlled comparative efficacy trial. Sleep 2014; 37(9):1543-52. https://doi.org/10.5665/sleep.4008
  42. Wahbeh H, Elsas S-M, Oken BS. Mind-body interventions: Application in neurology. Neurology 2008; 70(24):2321-8. https://doi.org/10.1212/01.wnl.0000314667.16386.5e
  43. Bower JE, Ganz PA, Irwin MR, Arevalo JMG, Cole SW. Fatigue and gene expression in human leukocytes: Increased NF-κB and decreased glucocorticoid signalling in breast cancer survivors with persistent fatigue. Brain BehavImmun 2013; 31(9):1713-23.
  44. Creswell J, Irwin M. Mindfulness-based stress reduction training reduces loneliness and pro-inflammatory gene expression in older adults: a small randomized controlled trial. Brain Behav Immun 2012; 26(7):1095-101. https://doi.org/10.1016/j.bbi.2012.07.006
  45. Black DS, Cole S, Irwin MR, Breen E, St Cyr NM, Nazarian N, et al. Yogic meditation reverses NF-κB and IRF-related transcriptome dynamics in leukocytes of family dementia caregivers in a randomized controlled trial. Psychoneuroendocrinology 2013; 38(3):348-55. https://doi.org/10.1016/j.psyneuen.2012.06.011
  46. Kuo B, Bhasin M, Jacquart J, Scult MA, Slipp L, Riklin EI, et al. Genomic and clinical effects associated with a relaxation response mind-body intervention in patients with irritable bowel syndrome and inflammatory bowel disease. PLoS One 2015; 10(4):1-26. https://doi.org/10.1371/journal.pone.0123861
  47. Broderick JE. Mind-body medicine in rheumatologic disease. Rheum Dis Clin North Am 2000; 26(1):161-76. https://doi.org/10.1016/S0889-857X(05)70129-0
  48. Horesh D, Glick I, Taub R, Agmon-levin N, Shoenfeld Y. Mindfulness-based group therapy for systemic lupus erythematosus: A first exploration of a promising mind-body intervention. Complement Ther Clin Pract2017; 26:73-5. https://doi.org/10.1016/j.ctcp.2016.11.011



DOI: https://doi.org/10.19106/JMedSci005203202008

Article Metrics

Abstract views : 1665 | views : 1581




Copyright (c) 2020 Deddy Nur Wachid Achadiono, Nyoman Kertia, Achmad Husain Asdie, Bambang Udji Djoko Riyanto

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

View My Stats

 

Creative Commons License
Journal of the Medical Sciences (Berkala Ilmu Kedokteran) by  Universitas Gadjah Mada is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

https://bukutamu.pta-medan.go.id/-/tox/ https://bukutamu.pta-medan.go.id/-/dmx/ https://bukutamu.pta-medan.go.id/-/maxx/ https://ikm.pta-medan.go.id/777x/ https://ikm.pta-medan.go.id/danax/ https://ikm.pta-medan.go.id/thx/ https://ipak.pta-medan.go.id/pulsax/ https://ipak.pta-medan.go.id/5000/ https://ipak.pta-medan.go.id/gcx/ https://jdih.pta-medan.go.id/dm/ https://jdih.pta-medan.go.id/mx/ https://jdih.pta-medan.go.id/th/ https://ptsp.pta-medan.go.id/200/ https://ptsp.pta-medan.go.id/raffi/ https://ptsp.pta-medan.go.id/tos/ https://sipp-portal.pta-medan.go.id/gc/ https://sipp-portal.pta-medan.go.id/ps/ https://sipp-portal.pta-medan.go.id/d5000/ https://karir.stmik-dci.ac.id/wp-content/bdslt/ https://karir.stmik-dci.ac.id/wp-content/bdtg/ https://karir.stmik-dci.ac.id/wp-content/qris/ https://bukutamu.pta-medan.go.id/developer/demox/ https://bukutamu.pta-medan.go.id/developer/xthaix/ https://bukutamu.pta-medan.go.id/system/xtx/