Antibacterial and Antibiofilm of Cinnamomum burmanii Bark Oil (CbBO) against Klebsiella pneumoniae ATCC 700603: In Vitro Study

Inayati Inayati(1*), Hartono Hartono(2), Dono Indarto(3), Betty Suryawati(4)
(1) *) Doctoral Program of Medical Sciences, Faculty of Medicine, Universitas Sebelas Maret Surakarta *) Department of Microbiology, Faculty of Medicine and Health Sciences, Universitas Muhammadiyah Yogyakarta
(2) *) Doctoral Program of Medical Sciences, Faculty of Medicine, Universitas Sebelas Maret Surakarta *) Department of Physiology, Faculty of Medicine, Universitas Sebelas Maret Surakarta
(3) *) Doctoral Program of Medical Sciences, Faculty of Medicine, Universitas Sebelas Maret Surakarta *) Department of Department of Physiology and Biomedical Laboratory, Faculty of Medicine, Universitas Sebelas Maret Surakarta
(4) *) Doctoral Program of Medical Sciences, Faculty of Medicine, Universitas Sebelas Maret Surakarta *) Department of Microbiology, Faculty of Medicine, Universitas Sebelas Maret Surakarta
(*) Corresponding Author
Abstract
Many cases of multidrug-resistant (MDR) bacterial infections are caused by Klebsiella pneumoniae (K.pn), an infectious disease bacterium. Hospital inpatients can be exposed to this occurrence; MDR has transformed 26.96% of infections at Klaten Hospital into highly infectious biofilms, while 54.49% of infections have produced biofilms. Approximately 80% of bacterial illnesses resistant to antibiotics are caused by biofilm-forming bacteria. To reduce biofilm formation, antibacterial compounds, one of which comes from natural products, are necessary. Renowned for its essential oil, Cinnamomum burmanii Bark Oil (CbBO) has been utilized extensively in herbal medicine to combat pathogenic bacteria such as Pseudomonas aeruginosa, Candida albicans, Enterobacter spp., and Staphylococcus aureus. This study aims to evaluate CbBO’s antibacterial capabilities using the microdilution method and its antibiofilm properties against K. pneumoniae ATCC 700603 using the MTT test. A CbBO minimum bactericidal concentration (MBC) of 0.25 mg/mL and a minimum inhibitory concentration (MIC) of 0.125 mg/mL were employed for antibacterial activity. The antibiofilm potential was determined by measuring the minimum biofilm eradication concentration (MBEC) at 0.5 mg/mL and the minimum biofilm inhibition concentration (MBIC) at 0.25 mg/mL. In conclusion, CbBO demonstrated antimicrobial and antibiofilm qualities. However, a greater concentration of CbBO was required for antibiofilm formation than for antibacterial purposes.
Keywords
Full Text:
PDFReferences
Alcántar-Curiel, M. D., Ledezma-Escalante, C. A., Jarillo-Quijada, M. D., Gayosso-Vázquez, C., Morfín-Otero, R., Rodríguez-Noriega, E., Cedillo-Ramírez, M. L., Santos-Preciado, J. I., & Girón, J. A. (2018). Association of Antibiotic Resistance, Cell Adherence, and Biofilm Production with the Endemicity of Nosocomial Klebsiella pneumoniae. BioMed Research International, 2018. https://doi.org/10.1155/2018/7012958
Amalaradjou, M. A. R., Kim, K. S., & Venkitanarayanan, K. (2014). Sub-inhibitory concentrations of trans-cinnamaldehyde attenuate virulence in cronobacter sakazakii in vitro. International Journal of Molecular Sciences, 15(5), 8639–8655. https://doi.org/10.3390/ijms15058639
Amalaradjou, M. A. R., Narayanan, A., Baskaran, S. A., & Venkitanarayanan, K. (2010). Antibiofilm Effect of Trans-Cinnamaldehyde on Uropathogenic Escherichia coli. Journal of Urology, 184(1), 358–363. https://doi.org/10.1016/j.juro.2010.03.006
Baskaran, S. A., Amalaradjou, M. A. R., Hoagland, T., & Venkitanarayanan, K. (2010). Inactivation of Escherichia coli O157:H7 in apple juice and apple cider by trans-cinnamaldehyde. International Journal of Food Microbiology, 141(1–2), 126–129. https://doi.org/10.1016/j.ijfoodmicro.2010.04.002
Bjarnsholt, T., Ciofu, O., Molin, S., Givskov, M., & Høiby, N. (2013). Applying insights from biofilm biology to drug development-can a new approach be developed? Nature Reviews Drug Discovery, 12(10), 791–808. https://doi.org/10.1038/nrd4000
Borges, A., Abreu, A. C., Dias, C., Saavedra, M. J., Borges, F., & Simões, M. (2016). New perspectives on the use of phytochemicals as an emergent strategy to control bacterial infections, including biofilms. Molecules, 21(7). https://doi.org/10.3390/molecules21070877
Bouhdid, S., Abrini, J., Amensour, M., Zhiri, A., Espuny, M. J., & Manresa, A. (2010). Functional and ultrastructural changes in Pseudomonas aeruginosa and Staphylococcus aureus cells induced by Cinnamomum verum essential oil. Journal of Applied Microbiology, 109(4), 1139–1149. https://doi.org/10.1111/j.1365-2672.2010.04740.x
Burt, S. (2004). Essential oils: Their antibacterial properties and potential applications in foods - A review. International Journal of Food Microbiology, 94(3), 223–253. https://doi.org/10.1016/j.ijfoodmicro.2004.03.022
Cargnin, S. T., & Gnoatto, S. B. (2017). Ursolic acid from apple pomace and traditional plants: A valuable triterpenoid with functional properties. Food Chemistry, 220, 477–489. https://doi.org/10.1016/j.foodchem.2016.10.029
Chen, Y., Zhao, J., Liu, C., Wu, D., & Wang, X. (2023). In-vitro antibacterial activity and mechanism of Monarda didyma essential oils against Carbapenem-resistant Klebsiella pneumoniae. BMC Microbiology, 23(1), 1–13. https://doi.org/10.1186/s12866-023-03015-4
Chew, K. L., Lin, R. T. P., & Teo, J. W. P. (2017). Klebsiella pneumoniae in Singapore: Hypervirulent infections and the carbapenemase threat. Frontiers in Cellular and Infection Microbiology, 7(DEC), 1–9. https://doi.org/10.3389/fcimb.2017.00515
Cui, H., Li, W., Li, C., Vittayapadung, S., & Lin, L. (2016). Liposome containing cinnamon oil with antibacterial activity against methicillin-resistant Staphylococcus aureus biofilm. Biofouling, 32(2), 215–225. https://doi.org/10.1080/08927014.2015.1134516
Di Tella, D., Tamburro, M., Guerrizio, G., Fanelli, I., Sammarco, M. L., & Ripabelli, G. (2019). Molecular epidemiological insights into colistin-resistant and carbapenemases-producing clinical Klebsiella pneumoniae isolates. Infection and Drug Resistance, 12, 3783–3795. https://doi.org/10.2147/IDR.S226416
Domadia, P., Swarup, S., Bhunia, A., Sivaraman, J., & Dasgupta, D. (2007). Inhibition of bacterial cell division protein FtsZ by cinnamaldehyde. Biochemical Pharmacology, 74(6), 831–840. https://doi.org/10.1016/j.bcp.2007.06.029
Doyle, A. A., & Stephens, J. C. (2019). A review of cinnamaldehyde and its derivatives as antibacterial agents. Fitoterapia, 139, 104405. https://doi.org/10.1016/j.fitote.2019.104405
Firmino, D. F., Cavalcante, T. T. A., Gomes, G. A., Firmino, N. C. S., Rosa, L. D., De Carvalho, M. G., & Catunda, F. E. A. (2018). Antibacterial and Antibiofilm Activities of Cinnamomum Sp. Essential Oil and Cinnamaldehyde: Antimicrobial Activities. Scientific World Journal, 2018. https://doi.org/10.1155/2018/7405736
Friedman, M. (2017). Chemistry, Antimicrobial Mechanisms, and Antibiotic Activities of Cinnamaldehyde against Pathogenic Bacteria in Animal Feeds and Human Foods. Journal of Agricultural and Food Chemistry, 65(48), 10406–10423. https://doi.org/10.1021/acs.jafc.7b04344
Fux, C. A., Costerton, J. W., Stewart, P. S., & Stoodley, P. (2005). Survival strategies of infectious biofilms. Trends in Microbiology, 13(1), 34–40. https://doi.org/10.1016/j.tim.2004.11.010
Gill, A. . O., & Holley, R. A. (2006). Disruption of Escherichia coli, Listeria monocytogenes, and Lactobacillus sakei cellular membranes by plant oil aromatics. International Journal of Food Microbiology, 108(1), 1–9. https://doi.org/10.1016/j.ijfoodmicro.2005.10.009
Gill, A. O., & Holley, R. A. (2004). Mechanisms of bactericidal action of cinnamaldehyde against Listeria monocytogenes and of eugenol against L. monocytogenes and Lactobacillus sakei. Applied and Environmental Microbiology, 70(10), 5750–5755. https://doi.org/10.1128/AEM.70.10.5750-5755.2004
GLAS. (2020). Global antimicrobial resistance and use surveillance system (GLASS) report. In Who. http://www.who.int/glass/resources/publications/early-implementation-report-2020/en/
Jamal, M., Ahmad, W., Andleeb, S., Jalil, F., Imran, M., Nawaz, M. A., Hussain, T., Ali, M., Rafiq, M., & Kamil, M. A. (2018). Bacterial biofilm and associated infections. Journal of the Chinese Medical Association, 81(1), 7–11. https://doi.org/10.1016/j.jcma.2017.07.012
Murphy, C. N., & Clegg, & S. (2012). Klebsiella pneumoniae and type 3 fimbriae: nosocomial infection, regulation and biofilm formation. Future Microbiol. (2012) 7(8), 991–1002, 7(8), 991–1002. https://doi.org/https://doi.org/10.2217/fmb.12.74
Nirwati, H., Sinanjung, K., Fahrunissa, F., Wijaya, F., Napitupulu, S., Hati, V. P., Hakim, M. S., Meliala, A., Aman, A. T., & Nuryastuti, T. (2019). Biofilm formation and antibiotic resistance of Klebsiella pneumoniae isolated from clinical samples in a tertiary care hospital, Klaten, Indonesia. BMC Proceedings, 13(Suppl 11), 1–8. https://doi.org/10.1186/s12919-019-0176-7
Nuryastuti, T., Van Der Mei, H. C., Busscher, H. J., Iravati, S., Aman, A. T., & Krom, B. P. (2009). Effect of cinnamon oil on icaA expression and biofilm formation by Staphylococcus epidermidis. Applied and Environmental Microbiology, 75(21), 6850–6855. https://doi.org/10.1128/AEM.00875-09
Prajapati, J. A., Humbal, B. R., Sadariya, K. A., & Shailesh, K. (2019). Determination of in-vivo anti-inflammatory potential of Cinnamomum zeylanicum oil in female wistar rats. The Pharma Innovation Journal 2019; 8(7): 544-547 ISSN, 8(7), 544–547.
Qian, W., Wang, W., Zhang, J., Wang, T., Liu, M., Yang, M., Sun, Z., Li, X., & Li, Y. (2020). Antimicrobial and antibiofilm activities of ursolic acid against carbapenem-resistant Klebsiella pneumoniae. Journal of Antibiotics, 73(6), 382–391. https://doi.org/10.1038/s41429-020-0285-6
Qian weidong. (2020). Antimicrobial activity of eugenol against carbapenem-resistant Klebsiella pneumoniae and its effect on biofilms. Microbial Pathogenesis, 139(September 2019). https://doi.org/10.1016/j.micpath.2019.103924
Ramage, G., & Wickes, B. L. (2001). Standardized Method for In Vitro Antifungal Susceptibility Testing of. Society, 45(9), 2475–2479. https://doi.org/10.1128/AAC.45.9.2475
Rao, P. V., & Gan, S. H. (2014). Cinnamon: A multifaceted medicinal plant. Evidence-Based Complementary and Alternative Medicine, 2014. https://doi.org/10.1155/2014/642942
Santos, M. I. S., Martins, S. R., Veríssimo, C. S. C., Nunes, M. J. C., Lima, A. I. G., Ferreira, R. M. S. B., Pedroso, L., Sousa, I., & Ferreira, M. A. S. S. (2017). Essential oils as antibacterial agents against food-borne pathogens: Are they really as useful as they are claimed to be? Journal of Food Science and Technology, 54(13), 4344–4352. https://doi.org/10.1007/s13197-017-2905-0
Shadkam, S., Goli, H. R., Mirzaei, B., Gholami, M., & Ahanjan, M. (2021). Correlation between antimicrobial resistance and biofilm formation capability among Klebsiella pneumoniae strains isolated from hospitalized patients in Iran. Annals of Clinical Microbiology and Antimicrobials, 20(1), 1–7. https://doi.org/10.1186/s12941-021-00418-x
Shen, Q., Zhou, W., Hu, L., Qi, Y., Ning, H., Chen, J., & Mo, H. (2017). Bactericidal activity of alpha-bromocinnamaldehyde against persisters in Escherichia coli. PLoS ONE, 12(7), 1–13. https://doi.org/10.1371/journal.pone.0182122
Shreaz, S., Wani, W. A., Behbehani, J. M., Raja, V., Irshad, M., Karched, M., Ali, I., Siddiqi, W. A., & Hun, L. T. (2016). Cinnamaldehyde and its derivatives, a novel class of antifungal agents. Fitoterapia, 112, 116–131. https://doi.org/10.1016/j.fitote.2016.05.016
Silvia Novita. (2019). THE EFFECT OF Cinnamomum burmannii WATER EXTRACTION AGAINST Staphylococcus aureus, Enterobacter spp., Pseudomonas aeruginosa, AND Candida albicans: IN VITRO STUDY. Folia Medica Indonesiana ., 55(4), 285–289. http://dx.doi.org/10.20473/fmi.v55i4.24449
Tariq, S., Wani, S., Rasool, W., Shafi, K., Bhat, M. A., Prabhakar, A., Shalla, A. H., & Rather, M. A. (2019). A comprehensive review of the antibacterial, antifungal, and antiviral potential of essential oils and their chemical constituents against drug-resistant microbial pathogens. Microbial Pathogenesis, 134(March), 103580. https://doi.org/10.1016/j.micpath.2019.103580
Utchariyakiat, I., Surassmo, S., Jaturanpinyo, M., Khuntayaporn, P., & Chomnawang, M. T. (2016). Efficacy of cinnamon bark oil and cinnamaldehyde on anti-multidrug resistant Pseudomonas aeruginosa and the synergistic effects in combination with other antimicrobial agents. BMC Complementary and Alternative Medicine, 16(1), 1–7. https://doi.org/10.1186/s12906-016-1134-9
Vangalapati, M., Satya, N., Prakash, D. V, & Avanigadda, S. (2012). A review on pharmacological activities and clinical effects of Cinnamon species. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 3, 653–663.
Vasconcelos, N. G., Croda, J., & Simionatto, S. (2018). Antibacterial mechanisms of cinnamon and its constituents: A review. Microbial Pathogenesis, 120, 198–203. https://doi.org/10.1016/j.micpath.2018.04.036
Visvalingam, J., Hernandez-Doria, J. D., & Holley, R. A. (2013). Examination of the genome-wide transcriptional response of Escherichia coli O157: H7 to cinnamaldehyde exposure. Applied and Environmental Microbiology, 79(3), 942–950. https://doi.org/10.1128/AEM.02767-12
Vuotto, C., Longo, F., Balice, M. P., Donelli, G., & Varaldo, P. E. (2014). Antibiotic resistance related to biofilm formation in Klebsiella pneumoniae. In Pathogens. https://doi.org/10.3390/pathogens3030743
Weidong, Q. et al. (2020). Antimicrobial and antibiofilm activities of paeoniflorin against carbapenem-resistant Klebsiella pneumoniae. Journal of Applied Microbiology, 128(2), 401–413. https://doi.org/10.1111/jam.14480
Wijesinghe, G. K., Feiria, S. B., Maia, F. C., Oliveira, T. R., Joia, F., Barbosa, J. P., Boni, G. C., & Höfling, J. F. (2021). In-vitro antibacterial and antibiofilm activity of cinnamomum verum leaf oil against pseudomonas aeruginosa, staphylococcus aureus and klebsiella pneumoniae. Anais Da Academia Brasileira de Ciencias, 93(1), 1–11. https://doi.org/10.1590/0001-3765202120201507
Yu, Z., Tang, J., Khare, T., & Kumar, V. (2020). The alarming antimicrobial resistance in ESKAPEE pathogens: Can essential oils come to the rescue? Fitoterapia, 140, 104433. https://doi.org/10.1016/j.fitote.2019.104433

Article Metrics


Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Majalah Obat Tradisional

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Faculty of Pharmacy
Universitas Gadjah Mada