Cucumis melo L. ‘Gama Melon Parfum’ Extract: Volatile Compound Profile, Optimization, Preparation and Perfume Radar

Indra Gunawan(1*), Budi Setiadi Daryono(2), Eka Noviana(3), Teuku Nanda Saifullah Sulaiman(4)
(1) *) Doctoral Program in Pharmacy, Faculty of Pharmacy, Universitas Gadjah Mada, Sleman, Yogyakarta, Indonesia. *) Department of Pharmacy, Poltekkes Kemenkes Tanjungkarang, Bandar Lampung, Lampung
(2) Department of Genetics and Breeding, Faculty of Biology, Universitas Gadjah Mada, Sleman, Yogyakarta
(3) Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Sleman, Yogyakarta
(4) Department of Pharmaceutics, Faculty of Pharmacy, Universitas Gadjah Mada, Sleman, Yogyakarta
(*) Corresponding Author
Abstract
Perfume notes are a sophisticated blend of essential or fragrance oils that give perfumes a distinct scent. Melon notes are highly favored aromatic elements in perfumes. Melon (Cucumis melo L. ‘Gama Melon Parfum’), known by the local name Gama Melon Parfum (GMP), is a melon breed that has unique phenotypic characteristics: bitter taste, batik-like pattern, and fragrant aroma. GMP has a fresh and fruity melon character, typically used as a top note in the perfume pyramid concept. Our study aimed to develop a perfume derived from GMP volatile extract as a fragrance ingredient. The process included collection, identification, extraction, physicochemical characterization, volatile compound analysis, perfume optimization, preparation, and perfumery radar. GMP can serve as the top note in a perfume formulation. From the D-optimal mixture design, an ideal perfume formula could be created from a mixture of 0.95 mL GMP, 0.55 mL rose, and 0.50 mL vanilla. The composition was found to produce a perfume that met sensory standards: a transparent and uniform liquid without impurities. It also had a unique aromatic scent with a relative density of 0.8102 g/cm3 which fell within the specified range of 0.7000-1.200 g/cm3, viscosity of 0.7931 cps within the required range of 0.7830-1.4030 cps, and a hedonic level of 9.72 cm out of a maximum of 15.00 cm. The perfume radar showed fruity-floral-musk characteristics. Results from this research indicate that enhancing GMP as a fragrance ingredient enables the creation of an optimal perfume that meets the required standards, is well-received, and demonstrates an inclination toward femininity.
Keywords
Full Text:
PDFReferences
Aati, H. Y., Perveen, S., Aati, S., Orfali, R., Alqahtani, J. H., Al-Taweel, A. M., Wanner, J., & Aati, A. Y. (2022). Headspace solid-phase microextraction method for extracting volatile constituents from the different parts of Saudi Anethum graveolens L. and their antimicrobial activity. Heliyon, 8(3), e09051. https://doi.org/10.1016/j.heliyon.2022.e09051
Abebe, T. G., Abebe, A. A., GashuTadesse, M., & Mandefro, S. B. (2021). Extraction and characterization of aromatic essential oils for natural perfume formulation. Berhan International Research Journal of Science and Humanities, 5, 17–32. https://doi.org/10.61593/dbu.birjsh.01.01.84
Ahmad, H., Khera, R. A., Hanif, M. A., Ayub, M. A., & Jilani, M. I. (2020). Vanilla. In Medicinal Plants of South Asia (pp. 657–669). Elsevier. https://doi.org/10.1016/B978-0-08-102659-5.00048-3
Ai, Z., Mowafy, S., & Liu, Y. (2022). Comparative analyses of five drying techniques on drying attributes, physicochemical aspects, and flavor components of Amomum villosum fruits. LWT, 154, 112879. https://doi.org/10.1016/j.lwt.2021.112879
Ameh, O. E., Achika, J. I., Bello, N. M., & Owolaja, A. J. (2021). Extraction and Formulation of Perfume from Cymbopogon citratus (Lemongrass). Journal of Applied Sciences and Environmental Management, 25(8), 1461–1463. https://doi.org/10.4314/jasem.v25i8.27
Apaolaza, V., Hartmann, P., López, C., Barrutia, J. M., & Echebarria, C. (2014). Natural ingredients claim’s halo effect on hedonic sensory experiences of perfumes. Food Quality and Preference, 36, 81–86. https://doi.org/10.1016/j.foodqual.2014.03.004
Arribas, M. P., Soro, P., & Silvestre, J. F. (2013). Allergic Contact Dermatitis to Fragrances: Part 2. Actas Dermo-Sifiliográficas, 104(1), 29–37. https://doi.org/10.1016/j.ad.2012.03.005
Bakrim, S., Benkhaira, N., Bourais, I., Benali, T., Lee, L.-H., El Omari, N., Sheikh, R. A., Goh, K. W., Ming, L. C., & Bouyahya, A. (2022). Health Benefits and Pharmacological Properties of Stigmasterol. Antioxidants, 11(10), 1912. https://doi.org/10.3390/antiox11101912
Barba, C., Thomas-Danguin, T., & Guichard, E. (2017). Comparison of stir bar sorptive extraction in the liquid and vapour phases, solvent-assisted flavour evaporation, and headspace solid-phase microextraction for the (non)--targeted analysis of volatiles in fruit juice. LWT - Food Science and Technology, 85, 334–344. https://doi.org/10.1016/j.lwt.2016.09.015
BSN. (1998). SNI 16-4949-1998: Sediaan Eau de Cologne, Eau de Toilette, Eau de Parfum. badan Standardisasi Nasional.
BSN. (2014). SNI 3954-2014: Minyak Kayu Putih. Badan Standardisasi Nasional.
Cameo. (2023). Trans-Squalene [Goverment]. Trans-Squalene. https://cameochemicals.noaa.gov/chemical/21030
Chemicalbook. (2023a). 1-Hexadecene [Business]. 1-Hexadecene. https://www.chemicalbook.com/ChemicalProductProperty_EN_CB5854040.htm
Chemicalbook. (2023b). 1-Octadecene [Business]. 1-Octadecene. https://www.chemicalbook.com/ChemicalProductProperty_EN_CB2306528.htm
Chemicalbook. (2023c). Palmitic acid ethyl ester [Business]. Palmitic Acid Ethyl Ester. https://www.chemicalbook.com/ChemicalProductProperty_EN_CB9854033.htm#:~:text=Recent%20study%20has%20also%20demonstrated%20the%20potential%20anti-inflammatory,is%20nearly%20tasteless
%20and%20has%20a%20creamy%20mouthfeel.
Chen, X., Chen, H., Xiao, J., Liu, J., Tang, N., & Zhou, A. (2020). Variations of volatile flavour compounds in finger citron (Citrus medica L. var. Sarcodactylis) pickling process revealed by E-nose, HS-SPME-GC-MS, and HS-GC-IMS. Food Research International, 138, 109717. https://doi.org/10.1016/j.foodres.2020.109717
Chisvert, A., López-Nogueroles, M., & Salvador, A. (2018). Perfumes. In Reference Module in Chemistry, Molecular Sciences and Chemical Engineering (p. B9780124095472140375). Elsevier. https://doi.org/10.1016/B978-0-12-409547-2.14037-5
Chung, T. Y., Eiserich, J. P., & Shibamoto, T. (1993). Volatile compounds isolated from edible Korean chamchwi (Aster scaber Thunb). Journal of Agricultural and Food Chemistry, 41(8), 1693–1697. https://doi.org/10.1021/jf00034a033
Conde-Martínez, N., Sinuco, D. C., & Osorio, C. (2014). Chemical studies on curuba (Passiflora mollissima (Kunth) L. H. Bailey) fruit flavour. Food Chemistry, 157, 356–363. https://doi.org/10.1016/j.foodchem.2014.02.056
Curtis, P. C. (2013). Untrained Sensory Panels. In C. R. Kerth (Ed.), The Science of Meat Quality (1st ed., pp. 215–231). Wiley. https://doi.org/10.1002/9781118530726.ch12
Da Silva, A. C., & Jorge, N. (2014). Bioactive compounds of the lipid fractions of agro-industrial waste. Food Research International, 66, 493–500. https://doi.org/10.1016/j.foodres.2014.10.025
Daryono, B. S. (2019, December 3). Biodiversitas: Prospek dan Pemanfaatan dalam Industri Kosmetik Herbal [Power Point]. http://pasca.ugm.ac.id/fotopost/9eae61fcdb0d23a62437eacdb1c0c58c.pdf
Daryono, B. S., & Maryanto, S. D. (2017). Keanekaragaman dan Potensi Sumber Daya genetik Melon (1st ed.). Gadjah Mada University Press.
Echemi. (2023). Tetrahydrofurfuryl alcohol [Business]. Tetrahydrofurfuryl Alcohol. https://www.echemi.com/products/pd20150901166-tetrahydrofurfuryl-alcohol.html
FAO. (2023). Oleic acid [Goverment]. Oleic Acid. https://www.fao.org/food/food-safety-quality/scientific-advice/jecfa/jecfa-flav/details/en/c/68/
Fischersci. (2008). Linoleoyl Chloride. Thermo Fisher Scientific Chemicals, Inc. https://fscimage.fishersci.com/msds/93281.htm
Fischersci. (2020a). 1-Pentadecene. Thermo Fisher Scientific Chemicals, Inc. https://www.fishersci.com/store/msds?partNumber=AAH5351606&productDescription=1-PENTADECENE%2C+97%25+5G&vendorId=VN00024248&countryCode=US&language=en
Fischersci. (2020b). N-Hexatriacontane. Thermo Fisher Scientific Chemicals, Inc. https://www.fishersci.com/store/msds?partNumber=AA3164109&productDescription=N-HEXATRIACONTANE+97%2B%25+10G&vendorId=VN00024248&countryCode=US&language=en
Giuffrida, D., Martínez, N., Arrieta-Garay, Y., Fariña, L., Boido, E., & Dellacassa, E. (2020). Valorisation of Schinus molle fruit as a source of volatile compounds in foods as flavours and fragrances. Food Research International, 133, 109103. https://doi.org/10.1016/j.foodres.2020.109103
Goh, R. M. V., Lau, H., Liu, S. Q., Lassabliere, B., Guervilly, R., Sun, J., Bian, Y., & Yu, B. (2019). Comparative analysis of pomelo volatiles using headspace-solid phase micro-extraction and solvent-assisted flavour evaporation. LWT, 99, 328–345. https://doi.org/10.1016/j.lwt.2018.09.073
Gunawan, I., Daryono, B. S., Noviana, E., & Sulaiman, T. N. S. (2023). Nano-Perfumes As A Fragrance Carrier: Their Brief History, Essential Aspects, Development, Preparation Methods, Characteristics, And Future Perspectives. Indonesian Journal of Pharmacy. https://doi.org/10.22146/ijp.6652
Gunawan, I., & Rahayu, P. (2021). Formulasi dan Evaluasi Parfum Tipe Eau de Toilette (EDT) “Senarai Jingga.” Jurnal Kesehatan, 12(2), 257. https://doi.org/10.26630/jk.v12i2.2637
Gut, K., Kennard, K. W., Sikora, E., Miastkowska, M., & Lason, E. (2020). Method For Manufacturing An Alcohol-Free Perfume (European Patent Office Patent EP3586820A1).
Ha, J., Wang, Y., Jang, H., Seog, H., & Chen, X. (2014). Determination of E,E-farnesol in Makgeolli (rice wine) using dynamic headspace sampling and stir bar sorptive extraction coupled with gas chromatography–mass spectrometry. Food Chemistry, 142, 79–86. https://doi.org/10.1016/j.foodchem.2013.07.038
Harrison, M. E., Vosnaki, E., Biebel, J., Miguel Matos, & El-Latif, R. A. (2018). Best in Show: Melon [Business]. Best in Show: Melon (2018). https://www.fragrantica.com/news/Best-in-Show-Vanilla-For-Vanilla-Lovers-Vanilla-Haters-11274.html
Hasbullah, U. H. A. (2014). Profil Senyawa Volatil Selama Fase Perkembangan dan Senyawa Kunci Aroma Buah Melon (Cucumis melo l.) Kultivar Gama Melon Parfum [Thesis]. Gadjah Mada University.
Hasbullah, U. H. A., Supriyadi, & Daryono, B. S. (2019). Aroma Volatile Compounds Profile of Melon (Cucumis melo L.) cv. Gama Melon Parfum. IOP Conference Series: Earth and Environmental Science, 292(1), 012027. https://doi.org/10.1088/1755-1315/292/1/012027
Hasbullah, U. H. A., Supriyadi, & Daryono, B. S. (2021). Volatile Compounds Trigger The Pleasant Strong Aroma of New Cultivar Gama Melon Parfum During Growth and Maturation. Advances in Food Science, Sustainable Agriculture, and Agroindustrial Engineering, 4(1), 33–38.
Herráez, J. V., & Belda, R. (2004). Viscous Synergy of Pure Monoalcohol Mixtures in Water and Its Relation to Concentration. Journal of Solution Chemistry, 33(2), 117–129. https://doi.org/10.1023/B:JOSL.0000030279.67143.ac
Husnun, F., Daryono, B. S., Fitriani, A., & Supriyadi, S. (2022). Sifat Kimia dan Kinetika Degradasi Termal Antioksidan Jus Melon (Cucumis melo L.) Kultivar Gama Melon Parfum. Jurnal Teknologi Pertanian Andalas, 26(1), 72–83.
IMARC. (2023). Perfume Market: Global Industry Trends, Share, Size, Growth, Opportunity and Forecast 2023-2028 [Market Research Report]. https://www.imarcgroup.com/perfume-manufacturing-plant
ISO. (1998a). ISO 279-1998: Essential oils—Determination of relative density at 20°C - Reference method. International Organization for Standardization. https://www.iso.org/standard/25308.html
ISO. (1998b). ISO 280-1998: Essential oils - Determination of refractive index. International Organization for Standardization. https://www.iso.org/standard/25309.html
Jain, G. K., Ahmad, F. J., & Khar, R. K. (2012a). Pharmaceutical Rheology. In Theory and Practice of Physical Pharmacy (First, pp. 126–130). Elsevier Inc. https://www.elsevier.com/books/theory-and-practice-of-physical-pharmacy/jain/978-81-312-2824-1
Jain, G. K., Ahmad, F. J., & Khar, R. K. (2012b). Surface and Interfacial Phenomena. In Theory and Practice of Physical Pharmacy (First, pp. 207–209). Elsevier Inc. https://www.elsevier.com/books/theory-and-practice-of-physical-pharmacy/jain/978-81-312-2824-1
Jones, K. (2023, June 8). 1-Dodecene [Business]. 1-Dodecene. https://www.ingredientreviewer.com/ingredient/112-41-4/#:~:text=1-Dodecene%20is%20a%20clear%20and%20colorless%20liquid%20that,vapors%20may%20irritate%20the%20lungs%20or%20cause%20damage.
Kanwal, A., Bilal, M., Rasool, N., Zubair, M., Shah, S. A. A., & Zakaria, Z. A. (2022). Total Synthesis of Terpenes and Their Biological Significance: A Critical Review. Pharmaceuticals, 15(11), 1392. https://doi.org/10.3390/ph15111392
Kaur, N., Cabral, J.-L., Morin, A., & Waldron, K. C. (2011). Headspace stir bar sorptive extraction–gas chromatography/mass spectrometry characterization of the diluted vapor phase of cigarette smoke delivered to an in vitro cell exposure chamber. Journal of Chromatography A, 1218(2), 324–333. https://doi.org/10.1016/j.chroma.2010.11.035
Kim, M. K., Lee, Y.-Y., Lee, K., & Jang, H. W. (2019). Instrumental volatile flavor analysis of omija (Schisandra chinesis Baillon) using headspace stir-bar sorptive extraction-gas chromatography-mass spectrometry and its relationship to human sensory perceptions. Food Research International, 120, 650–655. https://doi.org/10.1016/j.foodres.2018.11.022
Lim, J. (2011). Hedonic scaling: A review of methods and theory. Food Quality and Preference, S0950329311000954. https://doi.org/10.1016/j.foodqual.2011.05.008
Liu, R., Du, Z., Zhang, Y., Shi, Y., Chen, X., Lin, L., Xiong, Y., & Chen, M. (2019). Volatile component quantification in combination with putative gene expression analysis reveals key players in aroma formation during fruit ripening in Carica papaya cv ‘Hong Fei.’ Postharvest Biology and Technology, 158, 110987. https://doi.org/10.1016/j.postharvbio.2019.110987
Liu, W. W., Qi, H. Y., Xu, B. H., Li, Y., Tian, X. B., Jiang, Y. Y., Xu, X. F., & Lv, D. Q. (2012). Ethanol treatment inhibits internal ethylene concentrations and enhances ethyl ester production during storage of oriental sweet melons (Cucumis melo var. Makuwa Makino). Postharvest Biology and Technology, 67, 75–83. https://doi.org/10.1016/j.postharvbio.2011.12.015
Marcus, J., Klossek, M. L., Touraud, D., & Kunz, W. (2013). Nano-droplet formation in fragrance tinctures: Nano-droplet formation in fragrance tinctures. Flavour and Fragrance Journal, 28(5), 294–299. https://doi.org/10.1002/ffj.3172
Maryanto, S. D., Ranis, R. E., & Daryono, B. S. (2014). Stability Phenotypic Characters and The Scent of Gama Melon Parfum Cultivar. IPTEK Journal of Proceedings Series, 1, 523–528. https://doi.org/10.12962/j23546026.y2014i1.286
Meilgaard, M. C., Civille, G. V., & Carr, B. T. (2016). Sensory evaluation techniques (Fifth edition). CRC Press, Taylor & Francis Group, CRC Press is an imprint of the Taylor & Francis Group, an Informa business.
Miastkowska, M., & Lasoń, E. (2020). Water-based nanoperfumes. In Nanocosmetics (pp. 173–183). Elsevier. https://doi.org/10.1016/B978-0-12-822286-7.00007-3
Miastkowska, M., Lasoń, E., Sikora, E., & Wolińska-Kennard, K. (2018). Preparation and Characterization of Water-Based Nano-Perfumes. Nanomaterials, 8(981), 1–15. https://doi.org/10.3390/nano8120981
Mohammadhosseini, M., Venditti, A., & Mahdavi, B. (2021). Characterization of essential oils and volatiles from the aerial parts of (Mentha pulegium) L. (Lamiaceae) using microwave-assisted hydrodistillation (MAHD) and headspace solid phase microextraction (HS-SPME) in combination with GC-MS. Natural Product Research, 1–5. https://doi.org/10.1080/14786419.2021.1960523
Montgomery, D. C. (2017). Design and Analysis of Experiments (Ninth Edition). John Wiley and Sons, Inc.
Nakamura, S. (1999, September 28). Palmitoleic acid [Business]. Smelling Old? https://web-japan.org/trends00/honbun/tj990921.html
NIOSH. (2019, October 30). Diacetone alcohol [Goverment]. Diacetone Alcohol. https://www.cdc.gov/niosh/npg/npgd0178.html
Niu, Y., Wang, R., Xiao, Z., Zhu, J., Sun, X., & Wang, P. (2019). Characterization of ester odorants of apple juice by gas chromatography-olfactometry, quantitative measurements, odour threshold, aroma intensity and electronic nose. Food Research International, 120, 92–101. https://doi.org/10.1016/j.foodres.2019.01.064
Niu, Y., Yao, Z., Xiao, Z., Zhu, G., Zhu, J., & Chen, J. (2018). Sensory evaluation of the synergism among ester odorants in light aroma-type liquor by odor threshold, aroma intensity and flash GC electronic nose. Food Research International, 113, 102–114. https://doi.org/10.1016/j.foodres.2018.01.018
Niu, Y., Zhu, Q., & Xiao, Z. (2020). Characterization of perceptual interactions among ester aroma compounds found in Chinese Moutai Baijiu by gas chromatography-olfactometry, odor Intensity, olfactory threshold and odor activity value. Food Research International, 131, 108986. https://doi.org/10.1016/j.foodres.2020.108986
Obando-Ulloa, J. M., Ruiz, J., Monforte, A. J., & Fernández-Trujillo, J. P. (2010). Aroma profile of a collection of near-isogenic lines of melon (Cucumis melo L.). Food Chemistry, 118(3), 815–822. https://doi.org/10.1016/j.foodchem.2009.05.068
Parab, A., Salgaonkar, K., Padwekar, O., & Purohit, D. S. J. (2020). Extraction and Formulation of Perfume from Lemongrass. 6(12).
Pollo, B. J., Romero-Orejón, K. L., Marsaioli, A. J., Rosa, P. T. V., & Augusto, F. (2022). Vacuum-assisted headspace solid-phase microextraction and gas chromatography coupled to mass spectrometry applied to source rock analysis. Advances in Sample Preparation, 1, 100001. https://doi.org/10.1016/j.sampre.2021.100001
Reeder, M. J. (2020). Allergic Contact Dermatitis to Fragrances. Dermatologic Clinics, 38, 371–377. https://doi.org/10.1016/j.det.2020.02.009
Ríos, J.-L. (2016). Essential Oils. In Essential Oils in Food Preservation, Flavor and Safety (pp. 3–10). Elsevier. https://doi.org/10.1016/B978-0-12-416641-7.00001-8
Ríos-Reina, R., Segura-Borrego, M. P., García-González, D. L., Morales, M. L., & Callejón, R. M. (2019). A comparative study of the volatile profile of wine vinegar with protected designation of origin by headspace stir bar sorptive extraction. Food Research International, 123, 298–310. https://doi.org/10.1016/j.foodres.2019.04.071
Rodrigues, A. E., Nogueira, I., & Faria, R. P. V. (2021). Perfume and Flavor Engineering: A Chemical Engineering Perspective. Molecules, 26(11), 3095. https://doi.org/10.3390/molecules26113095
Saputri, A. P., Wibowo, W. A., & Daryono, B. S. (2020). Phenotypical characters and biochemical compound of cucurbitacin melon (Cucumis melo L. ‘Gama Melon Parfum’) resulted from breeding. The 6th International Conference on Biological Science 2019: “Biodiversity as a Cornerstone for Embracing Future Humanity,” 060006. https://doi.org/10.1063/5.0017615
Sezille, C., Fournel, A., Rouby, C., Rinck, F., & Bensafi, M. (2014). Hedonic appreciation and verbal description of pleasant and unpleasant odors in untrained, trainee cooks, flavorists, and perfumers. Frontiers in Psychology, 5. https://doi.org/10.3389/fpsyg.2014.00012
Shahidi, F., & De Camargo, A. (2016). Tocopherols and Tocotrienols in Common and Emerging Dietary Sources: Occurrence, Applications, and Health Benefits. International Journal of Molecular Sciences, 17(10), 1745. https://doi.org/10.3390/ijms17101745
Sikora, E., Małgorzata, M., Wolinska Kennard, K., & Lason, E. (2018). Nanoemulsions as a Form of Perfumery Products. Cosmetics, 5(4), 63. https://doi.org/10.3390/cosmetics5040063
Silva, A. C. C., & Schmidt, F. C. (2022). Intensification of the freeze-drying rate of coffee extract by vacuum freezing. Innovative Food Science & Emerging Technologies, 78, 103022. https://doi.org/10.1016/j.ifset.2022.103022
Supriyadi, Suhardi, Suzuki, M., Yoshida, K., Muto, T., Fujita, A., & Watanabe, N. (2002). Changes in the Volatile Compounds and in the Chemical
and Physical Properties of Snake Fruit (Salacca edulis Reinw) Cv. Pondoh during Maturation. Journal of Agricultural and Food Chemistry, 50(26), 7627–7633. https://doi.org/10.1021/jf020620e
Syukri, Y., & Nugroho, B. H. (2020). Penggunaan D-Optimal Mixture Design untuk Optimasi dan Formulasi Self-Nano Emulsifying Drug Delivery System (SNEDDS) Asam Mefenamat. 07(03).
Teixeira, M. A. (2011). Perfume Performance and Classification: Perfumery Quaternary-Quinary Diagram (PQ2D®) and Perfumery Radar [Ph.D Thesis]. Dept. of Chemical Engineering, Faculty of Engineering of University of Porto.
Teixeira, M. A., Barrault, L., Rodríguez, O., Carvalho, C. C., & Rodrigues, A. E. (2014). Perfumery Radar 2.0: A Step toward Fragrance Design and Classification. Industrial & Engineering Chemistry Research, 53(21), 8890–88912. https://doi.org/10.1021/ie403968w
Teixeira, M. A., Rodríguez, O., Gomes, P., Mata, V., & Rodrigues, A. E. (Eds.). (2013). Perfume Engineering: Design, Performance and Classification. Butterworth-Heinemann.
Teixeira, M. A., Rodrı´guez, O., & Rodrigues, A. E. (2010). Perfumery Radar: A Predictive Tool for Perfume Family Classification. Industrial & Engineering Chemistry Research, 49(22), 11764–11777. https://doi.org/10.1021/ie101161v
TGSC. (2023a). 1-Docosanol [Business]. Octyl Acetate. http://www.thegoodscentscompany.com/data/rw1153971.html
TGSC. (2023b). Citronellol [Business]. Citronellol. http://www.thegoodscentscompany.com/data/rw1007032.html
TGSC. (2023c). Delta-tocopherol [Business]. Delta-Tocopherol. http://www.thegoodscentscompany.com/data/rw1118171.html
TGSC. (2023d). Gamma-tocopherol [Business]. Gamma-Tocopherol. http://thegoodscentscompany.com/data/rw1589901.html
TGSC. (2023e). Hexadecanoic acid [Business]. Hexadecanoic Acid. http://www.thegoodscentscompany.com/data/rw1009101.html
TGSC. (2023f). Isopropyl myristate [Business]. Isopropyl Myristate. http://www.thegoodscentscompany.com/data/rw1003462.html
TGSC. (2023g). Linoleic acid [Business]. Linoleic Acid. http://www.thegoodscentscompany.com/data/rw1045901.html
TGSC. (2023h). Octyl acetate [Business]. Octyl Acetate. http://www.thegoodscentscompany.com/data/rw1003462.html
USCG. (1999). The Chemical Hazards Response Information System (CHRIS)—Hazardous Chemical Data (Commandant Instruction 16465.12C; p. 181). U.S. Government Printing Office. https://www.dco.uscg.mil/Portals/9/DCO%20Documents/National%20Strike%20Force/foscr/ASTFOSCRSeminar/References/CHRISManualIntro.pdf?ver=2017-09-15-105040-973
Villanueva, N. D. M., Petenate, A. J., & Da Silva, M. A. A. P. (2005). Performance of the hybrid hedonic scale as compared to the traditional hedonic, self-adjusting, and ranking scales. Food Quality and Preference, 16(8), 691–703. https://doi.org/10.1016/j.foodqual.2005.03.013
Wang, B.-B., Sun, P.-Y., Chen, B.-L., Sajjad, U., & Yan, W.-M. (2022). Influence of the process parameters on the energy conservation and quality of the kiwi fruit subjected to vacuum freeze-drying. Case Studies in Thermal Engineering, 33, 101935. https://doi.org/10.1016/j.csite.2022.101935
Wang, C., Zhang, L., Qiao, Y., Liao, L., Shi, D., Wang, J., & Shi, L. (2022). Effects of ultrasound and ultra-high pressure pretreatments on volatile and taste compounds of vacuum-freeze dried strawberry slice. LWT, 160, 113232. https://doi.org/10.1016/j.lwt.2022.113232
Wang, Q., Wei, Y., Jiang, S., Wang, X., Xu, F., Wang, H., & Shao, X. (2020). Flavor development in peach fruit treated with 1-methylcyclopropene during shelf storage. Food Research International, 137, 109653. https://doi.org/10.1016/j.foodres.2020.109653
Wibowo, W. A., Maryanto, S. D., & Daryono, B. S. (2021). Phenotypic characters and identification CYPs (Cyclophilin) gene in Cucumis melo L. cv. Gama Melon Parfum. Biodiversitas Journal of Biological Diversity, 22(6). https://doi.org/10.13057/biodiv/d220601
Wibowo, W. A., Sulaiman, T. N. S., Supriyadi, S., & Daryono, B. S. (2022). Computational Study of Natural Compounds in Melon Fruit (Cucumis melon L. ‘GMP’) as Inhibitor of Epidermal Growth Factor Receptor Protein: 7th International Conference on Biological Science 2021zu. https://doi.org/10.2991/absr.k.220406.028
Wichchukit, S., & O’Mahony, M. (2022). The 9-point hedonic and unstructured line hedonic scales: An alternative analysis with more relevant effect sizes for preference. Food Quality and Preference, 99, 104575. https://doi.org/10.1016/j.foodqual.2022.104575
www.fragrantica.com. (2022). Melon Notes [Business]. Melon Notes. https://www.fragrantica.com/perfume/Acorelle/Absolu-Fruits-35478.html
Xia, Y., Song, J., Zhong, F., Halim, J., & O’Mahony, M. (2020). The 9-point hedonic scale: Using R-Index Preference Measurement to compute effect size and eliminate artifactual ties. Food Research International, 133, 109140. https://doi.org/10.1016/j.foodres.2020.109140
Xu, X., Zhang, L., Feng, Y., Zhou, C., Yagoub, A. E. A., Wahia, H., Ma, H., Zhang, J., & Sun, Y. (2021). Ultrasound freeze-thawing style pretreatment to improve the efficiency of the vacuum freeze-drying of okra (Abelmoschus esculentus (L.) Moench) and the quality characteristics of the dried product. Ultrasonics Sonochemistry, 70, 105300. https://doi.org/10.1016/j.ultsonch.2020.105300
Yingngam, B., & Brantner, A. H. (2015). Factorial design of essential oil extraction from Fagraea fragrans Roxb. Flowers and evaluation of its biological activities for perfumery and cosmetic applications. International Journal of Cosmetic Science, 37(3), 272–281. https://doi.org/10.1111/ics.12192
Zulfikar, M., Widya, F. S., Wibowo, W. A., Daryono, B. S., & Widiyanto, S. (2020). Antioxidant activity of melon fruit (Cucumis melo L. ‘GMP’) ethanolic extract. The 6th International Conference on Biological Science 2019: “Biodiversity as a Cornerstone for Embracing Future Humanity,” 040029. https://doi.org/10.1063/5.0015748

Article Metrics


Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Majalah Obat Tradisional

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Faculty of Pharmacy
Universitas Gadjah Mada