Formulation and Antioxidant Activity of Gotu Kola Jelly Candy with Plant-based Polymers as a Gelling Agent
Dwitya Devi Nurlistyo Devi(1), Cici Darsih(2), Nunung Yuniarti(3), Bondan Ardiningtyas(4), Marlyn Dian Laksitorini(5*)
(1) Undergraduate Program, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta
(2) Research Center for Technology and Processing, National Research Institute and Innovation, Yogyakarta
(3) Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Gadjah Mada University, Yogyakarta
(4) Department of Pharmaceutics, Faculty of Pharmacy, Gadjah Mada University, Yogyakarta
(5) *) Department of Pharmaceutics, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta *) Halal Center (Institute of Halal and Industry System), Universitas Gadjah Mada, Yogyakarta
(*) Corresponding Author
Abstract
Centella asiatica or gotu kola has a long history as a brain supplement. Gotu kola supplements are sold as liquid and dried extract which is less attractive for a younger generation. Jelly candy is an alternative dosage form with better acceptability across ages. However, the use of animal-derived polymers such as pork gelatine in the candy restricts those who practice vegetarian and halal lifestyles from consuming the products. This study aims to explore plant-based polymers glucomannan and kappa-carrageenan as gelling agents in the preparation of gotu kola jelly candy. Preparation of the jelly candy formula was designed based on Simplex Lattice Design. Evaluation of physical characteristics of jelly candy includes organoleptic, weight uniformity, moisture content, pH, and elasticity. The antioxidant activity of gotu kola before and after the manufacturing process was evaluated. The results showed that a combination of kappa-carrageenan 1.33% and glucomannan 0.67% is the optimum formula. Adding more proportion of kappa-carrageenan reduced jelly elasticity and moisture content. While adding glucomannan improved its elasticity responses but increased moisture content. Evaluation of the antioxidant activity of gotu kola in jelly candy suggested that gotu kola experienced a significant reduction in antioxidant activity following the production process. The IC50 of the crude extract initially was129.23 ppm while post jelly candy manufacturing, the IC50 increased to 197.49 ppm. This study suggested that improvement in extraction and production processes is necessary to maintain gotu kola antioxidant activity.
Keywords
Full Text:
PDFReferences
Ameliya, R., . N., & Handito, D. (2018). The effect of boiling time on vitamin C: Antioxidant activity and sensory properties of Singapore cherry (Muntingia calabura L.) syrup. Pro Food, 4(1), 289–297. https://doi.org/10.29303/profood.v4i1.77
Aryal, B., Adhikari, B., Aryal, N., Bhattarai, B. R., Khadayat, K., & Parajuli, N. (2021). LC-HRMS profiling and antidiabetic, antioxidant, and antibacterial activities of Acacia catechu (L.f.) Willd. BioMed Research International, 2021, 7588711. https://doi.org/10.1155/2021/7588711
De Torre, M. P., Cavero, R. Y., Calvo, M. I., & Vizmanos, J. L. (2019). A Simple and reliable method to quantify antioxidant activity in vivo. Antioxidants, 8(5), 142. https://doi.org/10.3390/antiox8050142
Davydova, N. (2018) USP Chewable gels monographs. USP Dietary Supplements Stakeholder Forum, May 15, 2018. pp. 1-20.
Fateha, Ulya, N., Asmanah, & Agusman. (2021). Comparison of gel preparation methods on gel strength measurement of carrageenan. IOP Conference Series: Earth and Environmental Science, 715(1), 012055. https://doi.org/10.1088/1755-1315/715/1/012055
Gomez, L. A. (2021). Growth evaluation and proximate analysis of gotu kola (Centella asiatica L.) in response to organic growing media combinations. Asian Journal of Fundamental and Applied Sciences, 2(2).
Gray, N. E., Alcazar Magana, A., Lak, P., Wright, K. M., Quinn, J., Stevens, J. F., Maier, C. S., & Soumyanath, A. (2018). Centella asiatica: Phytochemistry and mechanisms of neuroprotection and cognitive enhancement. Phytochemistry Reviews, 17(1), 161–194. https://doi.org/10.1007/s11101-017-9528-y
Hannan, Md. A., Haque, M. N., Munni, Y. A., Oktaviani, D. F., Timalsina, B., Dash, R., Afrin, T., & Moon, I. S. (2021). Centella asiatica promotes early differentiation, axodendritic maturation, and synaptic formation in primary hippocampal neurons. Neurochemistry International, 144, 104957. https://doi.org/10.1016/j.neuint.2021.104957
Harwoko, Pramono, S., Nugroho, A. E. (2014). Triterpenoid-rich fraction of Centella asiatica leaves and in vivo antihypertensive activity. International Food Research Journal, 21(1), 149-154.
Ioannou, I., Chekir, L., & Ghoul, M. (2020). Effect of heat treatment and light exposure on the antioxidant activity of flavonoids. Processes, 8(9), 1078. https://doi.org/10.3390/pr8091078
Jamil, S. S., Nizami, Q., & Salam, M. (2007). Centella asiatica (Linn.) urban: A review. Natural Product Radiance, 6(2).
Jaradat, N., Hussen, F., & Ali, A. Al. (2015). Preliminary phytochemical screening, quantitative estimation of total flavonoids, total phenols, and antioxidant activity of Ephedra alata decne. Journal of Materials and Environmental Science, 6(6), 1771–1778.
Jeong, S.-M., Kim, S.-Y., Kim, D.-R., Jo, S.-C., Nam, K. C., Ahn, D. U., & Lee, S.-C. (2004). Effect of heat treatment on the antioxidant activity of extracts from citrus peels. Journal of Agricultural and Food Chemistry, 52(11), 3389–3393..https://doi.org/10.1021/jf049899k
Lin, Y., Zhang, L., Li, X., Zhai, C., Liu, J., & Zhang, R. (2024). Effect and characterization of konjac glucomannan on xanthan gum/κ-carrageenan/agar system. International Journal of Biological Macromolecules, 257, 128639. https://doi.org/10.1016/j.ijbiomac.2023.128639
Long, H. S., Stander, M. A., & Van Wyk, B.-E. (2012). Notes on the occurrence and significance of triterpenoids (asiaticoside and related compounds) and caffeoylquinic acids in Centella species. South African Journal of Botany, 82, 53–59. https://doi.org/10.1016/j.sajb.2012.07.017
Mohammad Azmin, S. N. H., & Mat Nor, M. S. (2020). Chemical fingerprint of Centella Asiatica’s bioactive compounds in the ethanolic and aqueous extracts. Advances in Biomarker Sciences and Technology, 2, 35–44. https://doi.org/10.1016/j.abst.2020.10.001
Pindan, N. P., Saleh, C., & Magdaleni, A. R. (2021). Phytochemical test and antioxidant activity test of n-hexane fraction extract, ethyl acetate, and remained ethanol from the leaf of sungkai. Jurnal Atomik, 6, 22-27.
Pittella, F., Dutra, R. C., Junior, D. D., Lopes, M. T. P., & Barbosa, N. R. (2009). Antioxidant and cytotoxic activities of Centella asiatica (L) Urb. International Journal of Molecular Sciences, 10(9), 3713–3721. https://doi.org/10.3390/ijms10093713
Pramono, S., & Ajiastuti, D. (2004). Standardization of Centella asiatica (L.) urban herbal extract based on asiaticoside concentration by TLC-densitometry. Majalah Farmasi Indonesia, 15, 118-123.
Rao, S., Chetana, M., & Umadevi, P. (2005). Centella asiatica treatment during postnatal period enhances learning and memory in mice. Physiology & Behavior, 86(4), 449–457. https://doi.org/10.1016/j.physbeh.2005.07.019
Rusli, A., Metusalach, M., & Tahir, M. M. (2017). Characterization of carrageenan edible films plasticized with glycerol. Jurnal Pengolahan Hasil Perikanan Indonesia, 20(2), 219. https://doi.org/10.17844/jphpi.v20i2.17499
Sathiyanarayanan, L., Paradkar, A. R., & Mahadik, K. R. (2010). Development and validation of a densitometric HPTLC method for simultaneous analysis of wedelolactone and asiaticoside in a polyherbal formulation. Acta Chromatographica, 22(4), 651–663. https://doi.org/10.1556/AChrom.22.2010.4.13
Subathra, M., Shila, S., Devi, M. A., & Panneerselvam, C. (2005). Emerging role of Centella asiatica in improving age-related neurological antioxidant status. Experimental Gerontology, 40(8–9), 707–715. https://doi.org/10.1016/j.exger.2005.06.001
Sunil, S., Sharma, D. U. K., & Arathy, S. A. (2020). Pharmaceutical jellies: A novel way of drug delivery. J. Pharm. Sci., 12. 322-327
Susiloningrum, D., & Mugita Sari, D. E. (2021). Uji aktivitas antioksidan dan penetapan kadar flavonoid total ekstrak temu mangga (Curcuma mangga valeton & zijp ) dengan variasi konsentrasi pelarut (Antioxidant activity test and determination of total flavonoid content of Curcuma manga valeton & zijp) extract with variation of solvent concentration). Cendekia Journal of Pharmacy, 5(2), 117–127. https://doi.org/10.31596/cjp.v5i2.148
Suzery, M., Nudin, B., Nurwahyu Bima, D., & Cahyono, B. (2020). Effects of temperature and heating time on degradation and antioxidant activity of anthocyanin from Roselle petals (Hibiscus sabdariffa L.). International Journal of Science, Technology & Management, 1(4), 288–238. https://doi.org/10.46729/ijstm.v1i4.78
Thommes, M., Baert, L., Van ’T Klooster, G., Geldof, M., Schueller, L., Rosier, J., & Kleinebudde, P. (2009). Improved bioavailability of darunavir by use of κ-carrageenan versus microcrystalline cellulose as pelletization aid. European Journal of Pharmaceutics and Biopharmaceutics, 72(3), 614–620. https://doi.org/10.1016/j.ejpb.2009.03.004
Tunieva, E. K., Spiridonov, K. I., & Nasonova, V. V. (2021). A study on the synergetic interaction of kappa-carrageenan with konjac gum. IOP Conference Series: Earth and Environmental Science, 640(5), 052012. https://doi.org/10.1088/1755-1315/640/5/052012
Umka Welbat, J., Sirichoat, A., Chaijaroonkhanarak, W., Prachaney, P., Pannangrong, W., Pakdeechote, P., Sripanidkulchai, B., & Wigmore, P. (2016). Asiatic acid prevents the deleterious effects of valproic acid on cognition and hippocampal cell proliferation and survival. Nutrients, 8(5), 303. https://doi.org/10.3390/nu8050303
Uttara, B., Singh, A., Zamboni, P., & Mahajan, R. (2009). Oxidative stress and neurodegenerative diseases: A review of upstream and downstream antioxidant therapeutic options. Current Neuropharmacology, 7(1), 65–74. https://doi.org/10.2174/157015909787602823
Wong, J. H., Barron, A. M., & Abdullah, J. M. (2021). Mitoprotective effects of Centella asiatica (L.) Urb.: Anti-inflammatory and neuroprotective opportunities in neurodegenerative disease. Frontiers in Pharmacology, 12, 687935. https://doi.org/10.3389/fphar.2021.687935
Xu, M., Xiong, Y., Liu, J., Qian, J., Zhu, L., & Gao, J. (2012). Asiatic acid, a pentacyclic triterpene in Centella asiatica, attenuates glutamate-induced cognitive deficits in mice and apoptosis in SH-SY5Y cells. Acta Pharmacologica Sinica, 33(5), 578–587. https://doi.org/10.1038/aps.2012.3
Yuliani, S., & Linar, N. (2019). Effect of gotu kola (Centella asiatica) extract toward expression of caspase 3 of hippocampus pyramidal cells on dementia model rats induced by trimethyltin. Proceedings of the 2019 Ahmad Dahlan International Conference Series on Pharmacy and Health Science (ADICS-PHS 2019). Yogyakarta, Indonesia. https://doi.org/10.2991/adics-phs-19.2019.12
Zainol, N. A., Voo, S. C., Sarmidi, M. R., & Aziz, R. A. (2008). Profiling of Centella asiatica (L.) urban extract. Malaysian Journal of Analytical Sciences, 12(2). 322-327
Zin, Z. M., Sarbon, N. M., Zainol, M. K., Jaafar, S. N., Shukri, M. M., & Rahman, A. H. Ab. (2021). Halal and non-halal gelatine as a potential animal by-products in food systems: Prospects and challenges for Muslim community: First International Conference on Science, Technology, Engineering and Industrial Revolution (ICSTEIR 2020), Bandung, Indonesia. https://doi.org/10.2991/assehr.k.210312.086
DOI: https://doi.org/10.22146/mot.89699
Article Metrics
Abstract views : 509 | views : 351Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Majalah Obat Tradisional
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Faculty of Pharmacy
Universitas Gadjah Mada