Foraminifera Abundance in the Southern Waters of Sumbawa, Senunu Canyon, West Sumbawa, Sumbawa, West Nusa Tenggara

  • Resti Samyati Jatiningrum Geological Engineering Study Program, Faculty of Exploration and Production Technology, Universitas Pertamina, Jl. Teuku Nyak Arief, Jakarta 12220, Indonesia https://orcid.org/0000-0002-1599-412X
  • Gina Mulhimatul Aliyah Geological Engineering Study Program, Faculty of Exploration and Production Technology, Universitas Pertamina, Jl. Teuku Nyak Arief, Jakarta 12220, Indonesia
  • Anggun Mutika Geological Engineering Study Program, Faculty of Exploration and Production Technology, Universitas Pertamina, Jl. Teuku Nyak Arief, Jakarta 12220, Indonesia
  • Yunia Witasari Research Center for Limnology and Water resources, National Research and Innovation Agency of Indonesia (BRIN), Jl. Raya Jakarta-Bogor Km. 45, Bogor 16917, Indonesia https://orcid.org/0009-0009-1438-8513
Keywords: Distribution, Foraminifera, Southern Waters of Sumbawa

Abstract

The Southern Waters of Sumbawa, Senunu Canyon, West Nusa Tenggara, is influenced by the Indonesian Throughflow (ITF), crucial for regional marine dynamics. This area also faces impacts from mining tailings discharged into the seabed, raising concerns about their effects on meiobenthic fauna, including foraminifera. This study examined changes in foraminiferal assemblages, abundance, and diversity using 20 gravity core samples from sites NM.021 and NM.023. The results revealed a diverse and abundant presence of foraminifera, with planktonic foraminifera dominating in terms of abundance compared to benthic foraminifera, as indicated by an average P/B ratio exceeding 90 %. Twelve species of planktonic foraminifera and 17 species of benthic foraminifera were identified, with distinct compositions across the sites. At site NM.021, the most abundant benthic foraminifera were Bulimina sp. (23.5 %), Ceratobulimina pacifica (18.7 %), and Hoeglundina elegans (13.3 %), while dominant planktonic foraminiferal taxa consist of Hastigerina pelagica (21.6 %), Pulleniatina obliquiloculata (17.8 %), and Neogloboquadrina dutertrei (17.4 %). At site NM.023, the most abundant benthic foraminifera were Bolivinita quadrilateral (22.3 %) and Ceratobulimina pacifica (21.8 %), while the planktonic foraminiferal taxa showed similar dominance, with Pulleniatina obliquiloculata (20.8 %), Hastigerina pelagica (15 %), and Neogloboquadrina dutertrei (13.3 %) being the most abundant. The study highlights warm, eutrophic conditions with potential upwelling, indicated by planktonic species Pulleniatina obliquiloculata and Neogloboquadrina dutertrei. Additionally, these waters also have low oxygen levels (dysoxic), as evidenced by the presence of benthic species Bulimina sp. and Ceratobulimina pacifica.

References

Aksu, A.E. et al., 2002. Last glacial-Holocene paleoceanography of the Black Sea and Marmara Sea: stable isotopic, foraminiferal and coccolith evidence. Marine Geology, 190(1-2), pp.119-149. doi: 10.1016/S0025-3227(02)00345-6.

Ardi, R.D.W. et al., 2021. Changes of Thermocline Depth at The Sumba Island Offshore based on Planktonic Foraminiferal Assemblages and its Implication to Eutrophication since The Last Deglaciation (~18 ka bp): A Preliminary Study. Rudarsko-geološko-naftni zbornik, 36(3). doi: 10.17794/rgn.2021.3.3.

Ardi, R.D.W. et al., 2023. First occurrence of planktonic foraminiferal species Boliella adamsii as a marker for the Pleistocene-Holocene Boundary in the sea around Sumba Island. IOP Conference Series: Earth and Environmental Science, 1245, 012025. doi: 10.1088/1755-1315/1245/1/012025.

Bakus, G.J., 1990. Quantitative Ecology and Marine Biology, Oxford & IBH Publishing.

Baohua, L. et al., 1997. Pulleniatina obliquiloculata as a paleoceanographic indicator in the southern Okinawa trough during the last 20,000 years. Marine Micropaleontology, 32(1-2), pp.59-69. doi: 10.1016/S0377-8398(97)00013-3.

Barmawidjaja, B.M. et al., 1993. Glacial conditions in the northern Molucca Sea region (Indonesia). Palaeogeography, Palaeoclimatology, Palaeoecology, 101(1-2), pp.147-167. doi: 10.1016/0031-0182(93)90157-E.

Bé, A.W.H. & Hutson, W.H., 1977. Ecology of Planktonic Foraminifera and Biogeographic Patterns of Life and Fossil Assemblages in the Indian Ocean. Micropaleontology, 23(4), pp.369-414. doi: 10.2307/1485406.

Bolli, H.M. et al., 1985. Plankton Stratigraphy I, Cambridge University Press.

Buzas, M.A. & Gibson, T.G., 1969. Species diversity: benthonic foraminifera in Western North Atlantic. Science, 163(3862), pp.72-75. doi: 10.1126/science.163.3862.72.

Caulle, C. et al., 2015. Living (Rose-Bengal-stained) benthic foraminiferal faunas along a strong bottom-water oxygen gradient on the Indian margin (Arabian Sea). Biogeosciences, 12(16), pp.5005-5019. doi: 10.5194/bg-12-5005-2015.

Ding, X. et al., 2006. Distribution and ecology of planktonic foraminifera from the seas around the Indonesian Archipelago. Marine Micropaleontology, 58(2), pp.114-134. doi: 10.1016/j.marmicro.2005.10.003.

Gustiantini, L. et al., 2018. Foraminiferal Analysis Related to Paleoceanographic Changes of Arafura Sea and Surrounding During Holocene. Bulletin of the Marine Geology, 33(2), pp.105-108. doi: 10.32693/bomg.33.2.2018.571.

Gibson, T.G. & Buzas, M.A., 1973. Species Diversity: Patterns in Modern and Miocene Foraminifera of the Eastern Margin of North America. Geological Society of America Bulletin, 84(1), pp.217-238. doi: 10.1130/0016-7606(1973)84<217:SDPIMA>2.0.CO;2.

Gwyther, D. et al., 2009. Recolonisation of mine tailing by meiofauna in mesocosm and microcosm experiments. Marine Pollution Bulletin, 58(6), pp.841-850. doi: 10.1016/j.marpolbul.2009.01.019.

Holbourn, A. et al., 2013. Atlas of Benthic Foraminifera, Wiley-Blackwell.

Hull, P.M. et al., 2011. Seasonality and depth distribution of a mesopelagic foraminifera, Hastigerinella digitata, in Monterey Bay, California. Limnology and Oceanography, 56(2), pp.562-576. doi: 10.4319/lo.2011.56.2.0562.

LIPI, 2018. Deep Sea Study 2018. Pusat Penelitian Oseanografi – LIPI.

Loeblich, A.R. & Tappan, H., 1994. Foraminifera of the Sahul Shelf and Timor Sea, Cushman Foundation Special Publication.

Martins, M.V.A. et al., 2015. Characterization of bottom hydrodynamic conditions on the central western Portuguese continental shelf based on benthic foraminifera and sedimentary parameters. Marine Environmental Research, 109, pp.52-68. doi: 10.1016/j.marenvres.2015.06.006

Murray, J.W., 2006. Ecology and Applications of Benthic Foraminifera, Cambridge University Press.

Noviadi, Y. & Prijantono, A., 2011. Akumulasi Tailing Dasar Laut di Perairan Teluk Senunu dan Sekitarnya, Sumbawa Barat. Jurnal Geologi Kelautan, 9(3), pp.185-193. doi: 10.32693/jgk.9.3.2011.210.

Pawlowski, J., 2009. Foraminifera. In Encyclopedia of Microbiology, 3rd Ed. Elsevier, pp.646-662.

Phleger, F.B., 1951. Ecology of foraminifera, Northwest Gulf of Mexico, Geological Society of America. doi: 10.1130/MEM46.

Pflaumann, U. & Jian, Z., 1999. Modern distribution patterns of planktonic foraminifera in the South China Sea and western Pacific: a new transfer technique to estimate regional sea-surface temperatures. Marine Geology, 156(1-4), pp.41-83. doi: 10.1016/S0025-3227(98)00173-X.

Putra, P.S. & Nugroho, S.H., 2019. Distribusi Foraminifera Bentonik Hidup dalam Hubungannya dengan Sedimen Dasar Laut di Selat Sumba, Nusa Tenggara Timur. Jurnal Geologi dan Sumberdaya Mineral, 20(1), pp.17-26. doi: 10.33332/jgsm.2019.v20.1.17-26.

Postuma, J., 1971. Manual of Planktonic Foraminifera, Elsevier Publishing Company.

Psheneva, O.Y. & Gorbarenko, S.A., 2017. The responses of benthic foraminifera to paleoceanographic changes during the last glacial maximum, deglaciation, and the Holocene in the northwestern Pacific. Russian Journal of Marine Biology, 43(1), pp.65-75. doi: 10.1134/S1063074017010102.

Rathburn, A.E. et al., 1996. Comparisons of the ecology and stable isotopic compositions of living (stained) benthic foraminifera from the Sulu and South China Seas. Deep Sea Research Part I: Oceanographic Research Papers, 43(10), pp.1617-1646. doi: 10.1016/S0967-0637(96)00071-4.

Ravelo, A.C. et al., 1990. Reconstructing tropical atlantic hydrography using planktonic foraminifera and an ocean model. Paleoceanography, 5(3), pp.409-431. doi: 10.1029/PA005i003p00409.

Susetiono et al., 2020. The impact of tailings flow on the abundance of deep-sea meiofauna in Sumbawa waters. IOP Conference Series: Earth and Environmental Science, 413, 012011. doi: 10.1088/1755-1315/413/1/012011.

Troelstra, S.R. & Kroon, D., 1989. Note on Extant Planktonic Foraminifera from The Banda Sea, Indonesia (Snellius-II Expedition, Cruise G5). Netherlands Journal of Sea Research, 24(4), pp.459-463. doi: 10.1016/0077-7579(89)90123-3.

Zhang, P. et al., 2019. Geochemical characteristics from tests of four modern planktonic foraminiferal species in the Indonesian Throughflow region and their implications. Geoscience Frontiers, 10(2), pp.505-516. doi: 10.1016/j.gsf.2018.01.011.

Published
2025-06-10
How to Cite
Jatiningrum, R. S., Aliyah, G. M., Mutika, A. and Witasari, Y. (2025) “Foraminifera Abundance in the Southern Waters of Sumbawa, Senunu Canyon, West Sumbawa, Sumbawa, West Nusa Tenggara”, Journal of Tropical Biodiversity and Biotechnology, 10(2), p. jtbb15938. doi: 10.22146/jtbb.15938.
Section
Research Articles