Assessing Indigenous Ureolytic Bacteria Isolated from Gua Damai Limestone for Microbially Induced Calcite Precipitation (MICP)
Abstract
Low porosity and non-aggregated soil are significant global concerns, presenting substantial environmental hazards. This study determined the capacity of native ureolytic bacteria found in limestone to stabilise soil through the process of microbially induced calcite precipitation (MICP). Six pure bacterial isolates obtained from limestone in Gua Damai, Batu Caves, Selangor were qualitatively assessed for urease production. The isolate S4C4, identified as Bacillus tropicus strain NTF4, demonstrated the highest urease activity at 821.654 U mL-1. This isolate precipitated 37.15 ± 9 mg mL-1 of CaCO3 after 96 hours of incubation and XRD analysis confirmed the biocementation of organic soils treated by B. tropicus strain NTF4, primarily forming calcite and vaterites. Significant calcite polymorph presence in soil samples is attributed to a longer treatment duration which promotes crystal development and stability. Harnessing indigenous limestone ureolytic bacteria with high urease activity presents a promising avenue for green soil bio-stabilisation. This approach potentially unlocks sustainable and scalable applications of microbial-induced calcite precipitation (MICP) in large-scale geo-engineering projects.
References
Achal, V., Mukherjee, A., & Reddy, M.S., 2010. Characterization of two urease-producing and calcifying Bacillus spp. isolated from cement. Journal of Microbiology and Biotechnology, 20, pp.1571-1576. doi: 10.4014/jmb.1006.06032.
Achal, V. et al., 2013. Biogenic treatment improves the durability and remediates the cracks of concrete structures. Construction and Building Materials, 48, pp.1–5. doi: 10.1016/j.conbuildmat.2013.06.061
Ahmad, N.S.B.N. et al., 2020. A systematic review of soil erosion control practices on the agricultural land in Asia. International Soil and Water Conservation Research, 8(2), pp.103–115. doi: 10.1016/j.iswcr.2020.04.001
Akyol, E., Bozkaya, O., & Dogan, N.M., 2017. Strengthening sandy soils by microbial methods. Arab Journal of Geoscience, 10, 327. doi: 10.1007/s12517-017-3123-9
Algaifi, H.A. et al., 2020. Screening of native ureolytic bacteria for self-healing in cementitious materials. IOP Conference Series: Materials Science and Engineering, 849, 012074. doi: 10.1088/1757-899x/849/1/012074
Aliyu, A.D. et al., 2023a. Assessing indigenous soil ureolytic bacteria as potential agents for soil stabilization. Journal of Tropical Biodiversity and Biotechnology, 8, jtbb75128. doi: 10.22146/jtbb.75128
Aliyu, A.D. et al., 2023b. A study on bio-stabilisation of sub-standard soil by indigenous soil urease-producing bacteria. Pertanika Journal of Science & Technology, 31, pp.2389–2412. doi: 10.47836/pjst.31.5.18
Al Qabany, A., Soga, K. & Santamarina, C., 2011. Factors affecting efficiency of microbially induced calcite precipitation. Journal of Geotechnical and Geoenvironmental Engineering, 138, pp.992–1001. doi: 10.1061/(asce)gt.1943-5606.0000666
Al-Thawadi, S., & Cord-Ruwisch, R., 2012. Calcium carbonate crystals formation by ureolytic bacteria isolated from Australian soil and sludge. Journal of Advanced Science and Engineering Research, 2, pp.12–26.
Bang, S.S et al., S., 2010. Microbial calcite, a bio-based smart nanomaterial in concrete remediation. International Journal of Smart and Nano Materials, 1(1), pp.28–39. doi: 10.1080/19475411003593451
Bibi, S. et al., 2018. Isolation, differentiation and biodiversity of ureolytic bacteria of Qatari soil and their potential in microbially induced calcite precipitation (MICP) for soil stabilization. RSC Advances, 8, pp.5854–5863. doi: 10.1039/c7ra12758h
Burbank, M.B. et al., 2012. Urease activity of ureolytic bacteria isolated from six soils in which calcite was precipitated by indigenous bacteria. Geomicrobiology Journal, 29(4), pp.389–395. doi: 10.1080/01490451.2011.575913
Castro-Alonso, M.J. et al., 2019. Microbially induced calcium carbonate precipitation (MICP) and its potential in bioconcrete: Microbiological and molecular concepts. Frontiers in Materials, 6, 126. doi: 10.3389/fmats.2019.00126
Chang, R. et al., 2017. Tuning crystal polymorphisms and structural investigation of precipitated calcium carbonates for CO2 mineralization. ACS Sustainable Chemistry & Engineering, 5(2), pp.1659–1667. doi: 10.1021/acssuschemeng.6b02411.s001
Chen, L. et al., 2022. Systematic optimization of a novel, cost-effective fermentation medium of Sporosarcina pasteurii for microbially induced calcite precipitation (MICP). Construction and Building Materials, 348, 128632. doi: 10.1016/j.conbuildmat.2022.128632
DeJong, J., Tibbett, M. & Fourie, A., 2015. Geotechnical systems that evolve with ecological processes. Environmental Earth Sciences, 73, pp.1067-1082. doi: 10.1007/s12665-014-3460-x
Dhami, K.N., Mukherjee, A. & Reddy, M.S., 2016. Micrographical, minerological and nano-mechanical characterisation of microbial carbonates from urease and carbonic anhydrase-producing bacteria. Ecological Engineering, 94, pp.443–454. doi: 10.1016/j.ecoleng.2016.06.013
Dortey, M. D., Aboagye, G. & Tuah, B., 2020. Effect of storage methods and duration of storage on the bacteriological quality of processed liquid milk post-opening. Scientific African, 10, e00555. doi: 10.1016/j.sciaf.2020.e00555
Elmanama, A.A. & Alhour, M.T., 2013. Isolation, characterization and application of calcite-producing bacteria from urea-rich soils. Journal of Advanced Science and Engineering Research, 3(4), pp.388–399.
Erdmann, N. & Strieth, D., 2022. Influencing factors on ureolytic microbiologically induced calcium carbonate precipitation for biocementation. World Journal of Microbiology and Biotechnology, 39, pp.61–79. doi: 10.1007/s11274-022-03499-8
Fairbridge, R.W., Chilingar G.V. & Bissell H.J., 1967. Introduction. In Development in Sedimentology Volume 9. New York, USA: Elsevier, pp.1-28. doi: 10.1016/50070-45(08)71107.ch1
Ghosh, T. et al., 2019. Sporosarcina pasteurii can form nanoscale calcium carbonate crystals on the cell surface. PLOS ONE, 14, e210339. doi: 10.1371/journal.pone.0210339
Helmi, F.M. et al., 2016. Calcium carbonate precipitation induced by ureolytic bacteria Bacillus licheniformis. Ecological Engineering, 90, pp.367–371. doi: 10.1016/j.ecoleng.2016.01.044
Intarasoontron, J. et al., 2021. Comparing performances of MICP bacterial vegetative cell and microencapsulated bacterial spore methods on concrete crack healing. Construction and Building Materials, 302, 124227. doi: 10.1016/j.conbuildmat.2021.124227
Ibarra-Villarreal, A.L. et al., 2021. Salt-tolerant Bacillus species as a promising strategy to mitigate the salinity stress in wheat (Triticum turgidum subsp. durum). Journal of Arid Environments, 186, 104399. doi: 10.1016/j.jaridenv.2020.104399
Jiang, N-J. et al., 2016. Ureolytic activities of a urease-producing bacterium and purified urease enzyme in the anoxic condition: Implication for subseafloor sand production control by microbially induced carbonate precipitation (MICP). Ecological Engineering, 90, pp.96–104. doi: 10.1016/j.ecoleng.2016.01.073
Jiang, N.J. et al., 2019. Applicability of microbial calcification method for sandy-slope surface erosion control. Journal of Materials in Civil Engineering, 31(11), 04019250. doi: 10.1061/(asce)mt.1943-5533.0002897
Kakelar, M.M., Ebrahimi, S. & Hosseini, M., 2016. Improvement in soil grouting by biocementation through injection method. Asia‐Pacific Journal of Chemical Engineering, 11(6), pp.930–938. doi: 10.1002/apj.2027
Kim, G. & Youn, H., 2016. Microbially induced calcite precipitation employing environmental isolates. Materials, 9(6), pp.468–478. doi: 10.3390/ma9060468
Kontoyannis, C.G., & Vagenas, N.V., 2000. Calcium carbonate phase analysis using XRD and FT-Raman spectroscopy. Analyst, 125, pp.251–255. doi: 10.1039/a908609i
Kshetri, P., & Ningthoujam, D.S., 2016. Keratinolytic activities of alkaliphilic Bacillus sp. MBRL 575 from a novel habitat, limestone deposit site in Manipur, India. SpringerPlus, 5, 595. doi: 10.1186/s40064-016-2239-9
Kumar, S., Stecher G., & Tamura K., 2016. MEGA 7: molecular evolutionary genetics analysis version 7.0 for bigger dataset. Molecular Biology and Evolution, 33(7), pp.1870–1874. doi: 10.1093/molbev/msw054
Leeprasert, L., Chonudomkul, D. & Boonmak, C. 2022. Biocalcifying potential of ureolytic bacteria isolated from soil for biocementation and material crack repair. Microorganisms, 10(5), pp.963. doi: 10.3390/microorganisms10050963
Mekonnen, E. et al., 2021. Isolation and characterization of urease-producing soil bacteria. International Journal of Microbiology, 2021, 8888641. doi: 10.1155/2021/8888641
Moravej, S. et al., 2018. Stabilization of dispersive soils by means of biological calcite precipitation. Geoderma, 315, pp.130–137. doi: 10.1016/j.geoderma.2017.11.037
Mukherjee, S. et al., 2019. Application of microbial-induced carbonate precipitation for soil improvement via ureolysis. In Ground Improvement Techniques and Geosynthetics. Lecture Notes in Civil Engineering, 14. Singapore: Springer. doi: 10.1007/978-981-13-0559-7_10
Mwandira, W., Nakashima, K. & Kawasaki, S., 2017. Bioremediation of lead-contaminated mine waste by Pararhodobacter sp. based on the microbially induced calcium carbonate precipitation technique and its effects on the strength of coarse and fine-grained sand. Ecological Engineering, 109(Part A), pp.57–64. doi: 10.1016/j.ecoleng.2017.09.011
Naveed, M. et al., 2020. Application of microbially induced calcium carbonate precipitation with urea hydrolysis to improve the mechanical properties of soil. Ecological Engineering, 153, 105885. doi: 10.1016/j.ecoleng.2020.105885
Navneet, C., Anita, R. & Rafat, S., 2011. Calcium carbonate precipitation by different bacterial strains. African Journal of Biotechnology, 10(42), pp.8359–8372. doi: 10.5897/ajb11.345
Omoregie, A.I., Ginjom, R.H. & Nissom, P.M., 2018. Microbially induced carbonate precipitation via ureolysis process: a mini-review. Transactions on Science and Technology, 5(4), pp.245–256.
Omoregie, A.I., Ong, D.E.L., & Nissom, P.M., 2019. Assessing ureolytic bacteria with calcifying abilities isolated from limestone caves for biocalcification. Letters in Applied Microbiology, 68(2), pp.173–181. doi: 10.1111/lam.13103
Oral, Ç.M., & Ercan, B., 2018. Influence of pH on morphology, size and polymorph of room temperature synthesized calcium carbonate particles. Powder Technology, 339, pp.781–788. doi: 10.1016/j.powtec.2018.08.066
Paramananthan, S., Muhamad, N., & Pereira, J.J., 2021. Soil-related factors controlling erosion and landslides in Malaysia. Bulletin of the Geological Society of Malaysia, 72, pp.165–175. doi: 10.7186/bgsm72202113
Prah, J., Maček, J., & Dražič, G., 2011. Precipitation of calcium carbonate from a calcium acetate and ammonium carbamate batch system. Journal of Crystal Growth, 324(1), pp.229–234. doi: 10.1016/j.jcrysgro.2011.03.020
Rajasekar, A., Wilkinson, S., & Moy, C.K., 2021. MICP as a potential sustainable technique to treat or entrap contaminants in the natural environment: A review. Environmental Science and Ecotechnology, 6, pp.100096-100103. doi: 10.1016/j.ese.2021.100096
Reeksting, B.J. et al., 2020. In-depth profiling of calcite precipitation by environmental bacteria reveals fundamental mechanistic differences with relevance to application. Applied Environmental Microbiology, 86(7), e02739–19. doi: 10.1128/AEM.02739-19.
Retallack, G.J., 2021. Soil, soil processes, and paleosols. In Encyclopedia of Geology (Second Edition). Academic Press, pp.690–707. doi: 10.1016/b978-0-12-409548-9.12537-0
Richardson, A. et al., 2014. Surface consolidation of natural stone materials using microbial-induced calcite precipitation. Structural Survey, 32(3), pp.265–278. doi: 10.1108/ss-07-2013-0028
Seifan, M. & Berenjian, A., 2019. Microbially induced calcium carbonate precipitation: a widespread phenomenon in the biological world. Applied Microbiology and Biotechnology, 103(12), pp.4693–4708. doi: 10.1007/s00253-019-09861-5
Shen, N. et al., 2022. Isolation and identification of a feather degrading Bacillus tropicus strain Gxun-17 from the marine environment and its enzyme characteristics. BMC Biotechnology, 22(1), 11. doi: 10.1186/s12896-022-00742-w
Soon, N.W. et al., 2014. Factors affecting improvement in engineering properties of residual soil through microbial-induced calcite precipitation. Journal of Geotechnical and Geoenvironmental Engineering, 140(5), 04014006. doi: 10.1061/(asce)gt.1943-5606.0001089
Spanos, N. & Koutsoukos, P.G., 1998. The transformation of vaterite to calcite: effect of the conditions of the solutions in contact with the mineral phase. Journal of Crystal Growth, 191(4), pp.783–790. doi: 10.1016/s0022-0248(98)00385-6
Thakur, P., Singh, A.K. & Mukherjee, G., 2021. Isolation and characterization of alkaline pectinase productive Bacillus tropicus from fruit and vegetable waste dump soil. Brazilian Archives of Biology and Technology, 64, e21200319. doi: 10.1590/1678-4324-2021200319
Tomczyk-Żak, K., & Zielenkiewicz, U., 2016. Microbial diversity in caves. Geomicrobiology Journal, 33(1), pp.20–38. doi: 10.1080/01490451.2014.1003341
Van Paassen, L.A. et al., 2010. Quantifying biomediated ground improvement by ureolysis: Large-scale biogrout experiment. Journal of Geotechnical and Geoenvironmental Engineering, 136(12), pp.1721–1728. doi: 10.1061/(asce)gt.1943-5606.0000382
Wei, S. et al., 2015. Biomineralization processes of calcite induced by bacteria isolated from marine sediments. Brazilian Journal of Microbiology, 46(2), pp.455–464. doi: 10.1590/s1517-838246220140533
Wu, C.F. et al., 2014. An effective method for the detoxification of cya-nide-rich wastewater by Bacillus sp. CN-22. Applied Microbiology and Biotechnology, 98(8), pp.3801–3807. doi: 10.1007/s00253-013-5433-5
Yusof, N.F. et al., 2022. Soil erosion measurement: Malaysia perspectives. ASM Science Journal, 16(Special Issue 1), pp.44–58.
Xu, K. et al., 2024. Effect of crystal morphology on cementability and micromechanical properties of calcium carbonate precipitate induced by crude soybean enzyme, Journal of Rock Mechanics and Geotechnical Engineering, 16(12), pp.5095-5108. doi: 10.1016/ j.jrmge.2023.08.024
Yoshida, N., Higashimura, E. & Saeki, Y., 2010. Catalytic biomineralization of fluorescent calcite by the thermophilic bacterium Geobacillus thermoglucosidasius. Applied and Environmental Microbiology, 76(21), pp.7322–7327. doi: 10.1128/aem.01767-10
Yi, D. et al., 2021. Fabrication of patterned calcium carbonate materials through template-assisted microbially induced calcium carbonate precipitation. RSC Advance, 11, pp.28643-28650. doi: 10.1039/d1ra04072c
Zaghloul, E.H., Ibrahim, H.A. & El-Badan, D.E.S., 2021. Production of biocement with marine bacteria; Staphylococcus epidermidis EDH to enhance clay water retention capacity. The Egyptian Journal of Aquatic Research, 47(1), pp.53–59. doi: 10.1016/j.ejar.2020.08.005
Zhu, T. & Dittrich, M., 2016. Carbonate precipitation through microbial activities in natural environment, and their potential in biotechnology: A review. Frontiers in Bioengineering and Biotechnology, 4, 4. doi: 10.3389/fbioe.2016.00004