Impact of Global Climate Shifts on the Biodiversity and Functionality of Marine Zooplankton Communities
Abstract
The impact of climate change is one of the biggest crises facing humanity today. Not only humans are affected, but also the conditions of the marine environment, including zooplankton communities, which are a key component in the marine food chain. This study reviews the analysis of the impact of global climate shifts on biodiversity and the function of marine zooplankton communities. Specifically, the study addresses how temperature changes, ocean acidification, and other stressors affect zooplankton communities. In addition, the study includes an analysis of case studies and regional variations on the impacts of climate change on zooplankton communities, as well as discusses methodologies that can be used in studying the effects of climate change. We also evaluate existing knowledge gaps and identify future research directions that are needed. Through this latest evaluation, the research highlights the importance of continuous monitoring and a multi-stressor research approach. The study also emphasizes the importance of designing effective adaptation strategies for marine zooplankton communities, which are highly relevant to future sustainable marine conservation policies. The results of this study show the urgency of further research to maintain the integrity of marine ecosystems in facing the challenge of global climate change.
References
Algueró-Muñiz, M. et al., 2017. Ocean acidification effects on mesozooplankton community development: Results from a long-term mesocosm experiment. PLoS ONE, 12(4), e0175851. doi: 10.1371/journal.pone.0175851.
Alma, L. et al., 2020. Ocean acidification and warming effects on the physiology, skeletal properties, and microbiome of the purple-hinge rock scallop. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 240, 110579. doi: 10.1016/j.cbpa.2019.110579.
Atkinson, A. et al., 2004. Long-term decline in krill stock and increase in salps within the Southern Ocean. Nature, 432, pp.100-103. doi: 10.1038/nature02996.
Atkinson, A., 1996. Subantarctic copepods in an oceanic, low chlorophyll environment: Ciliate predation, food selectivity, and impact on prey populations. Marine Ecology Progress Series, 130(1/3), pp.85-96.
Bairagi, N. et al., 2019. Zooplankton selectivity and nutritional value of phytoplankton influences a rich variety of dynamics in a plankton population model. Physical Review, 99, 012406. doi: 10.1103/PhysRevE.99.012406.
Beaugrand, G. et al., 2002. Reorganization of North Atlantic marine copepod biodiversity and climate. Science, 296(5573), pp.1692-1694. doi: 10.1126/science.1071329.
Bednaršek, N. et al., 2012. Extensive dissolution of live pteropods in the Southern Ocean. Nature Geoscience, 5, pp.881-885. doi: 10.1038/ngeo1635.
Behrenfeld, M.J. & Falkowski, P.G., 1997. Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnology and Oceanography, 42(1), pp.1-20. doi: 10.4319/lo.1997.42.1.0001.
Bell, G. & Collins, S., 2008. Adaptation, extinction, and global change. Evolutionary Applications, 1(1), pp.3-16. doi: 10.1111/j.1752-4571.2007.00011.x.
Biuw, M. et al., 2010. Effects of hydrographic variability on the spatial, seasonal, and diel diving patterns of Southern Elephant Seals in the Eastern Weddell Sea. PLoS ONE, 5(11), e13816. doi: 10.1371/journal.pone.0013816.
Blanco-Bercial, L., 2020. Metabarcoding analyses and seasonality of the zooplankton community at BATS. Frontiers in Marine Science, 7, 173. doi: 10.3389/fmars.2020.00173.
Boyd, P.W. et al., 2018. Experimental strategies to assess the biological ramifications of multiple drivers of global ocean change-A review. Global Change Biology, 24(6), pp.2239-2261. doi: 10.1111/gcb.14102.
Brower, A.A., Clarke, J.T. & Ferguson, M.C., 2018. Increased sightings of sub-Arctic cetaceans in the eastern Chukchi Sea, 2008-2016: Population recovery, response to climate change, or increased survey effort? Polar Biology, 41(5), pp.1033-1039. doi: 10.1007/s00300-018-2257-x.
Bucklin, A. et al., 2018. Population genomics of marine zooplankton. In the book chapter: Population Genomics: Marine Organisms, pp.61-102. doi: 10.1007/13836_2017_9.
Bucklin, A. et al., 2019. Time-series metabarcoding analysis of zooplankton diversity of the NW Atlantic continental shelf. ICES Journal of Marine Science, 76(4), pp.1162-1176. doi: 10.1093/icesjms/fsz021.
Bucklin, A. et al., 2021. Toward a global reference database of COI barcodes for marine zooplankton. Marine Biology, 168, 78. doi: 10.1007/s00227-021-03887-y.
Byrne, M. & Przeslawski, R., 2013. Multistressor impacts of warming and acidification of the ocean on marine invertebrates’ life histories. Integrative and Comparative Biology, 53(4), pp.582-596. doi: 10.1093/icb/ict049.
Byrne, M. et al., 2009. Temperature, but not pH, compromises sea urchin fertilization and early development under near-future climate change scenarios. Proceedings of the Royal Society B: Biological Sciences, 276(1663), pp.1883-1888. doi: 10.1098/rspb.2008.1935.
Caldeira, K. & Wickett, M.E., 2005. Ocean model predictions of chemistry changes from carbon dioxide emissions to the atmosphere and ocean. Journal of Geophysical Research: Oceans, 110, C09S04. doi: 10.1029/2004JC002671.
Cheung, W.W.L. et al., 2011. Integrating ecophysiology and plankton dynamics into projected maximum fisheries catch potential under climate change in the Northeast Atlantic. ICES Journal of Marine Science, 68(6), pp.1008-1018. doi: 10.1093/icesjms/fsr012.
Ching-Ruey, L., 2020. Climate change: The causes, influence, and conceptual management. International Journal of Applied Engineering and Technology, 10, pp.15-25.
Choi, S.Y. et al., 2021. Effects of temperature and salinity on egg production, hatching, and mortality rates in Acartia ohtsukai (Copepoda, Calanoida). Frontiers in Marine Science, 8, 704479. doi: 10.3389/fmars.2021.704479.
Ciais, P. et al., 2013. Carbon and other biogeochemical cycles. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. UK & New York (USA): Cambridge University Press.
Collins, M. et al., 2013. Long-term climate change: Projections, commitments, and irreversibility. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. UK & New York (USA): Cambridge University Press.
Comeau, S. et al., 2009. Impact of ocean acidification on a key Arctic pelagic mollusc (Limacina helicina). Biogeosciences, 6(9), pp.1877-1882. doi: 10.5194/bg-6-1877-2009.
Cornell, S.E. & Gupta, A., 2019. Is climate change the most important challenge of our times? In Contemporary Climate Change Debates. Routledge. doi: 10.4324/9780429446252-2.
Cripps, G., Lindeque, P. & Flynn, K., 2014. Parental exposure to elevated pCO2 influences the reproductive success of copepods. Journal of Plankton Research, 36(5), pp.1165-1174. doi: 10.1093/plankt/fbu052.
Dalpadado, P. et al., 2012. Climate effects on Barents Sea ecosystem dynamics. ICES Journal of Marine Science, 69(7), pp.1303-1316. doi: 10.1093/icesjms/fss063.
DeBiasse, M.B. & Kelly, M.W., 2016. Plastic and evolved responses to global change: What can we learn from comparative transcriptomics? Journal of Heredity, 107(1), 71-81. doi: 10.1093/jhered/esv073.
Doney, S.C. et al., 2009. Ocean acidification: The other CO2 problem. Annual Review of Marine Science, 1, pp.169-192. doi: 10.1146/annurev.marine.010908.163834.
Ducklow, H.W. et al., 2007. Marine pelagic ecosystems: the West Antarctic Peninsula. Philosophical Transactions of the Royal Society B., 362(1477), pp.67-94. doi: 10.1098/rstb.2006.1955.
Durant, J.M. et al., 2007. Climate and the match or mismatch between predator requirements and resource availability. Climate Research, 33, pp.271-283. doi: 10.3354/cr033271.
Edwards, M. & Richardson, A.J., 2004. Impact of climate change on marine pelagic phenology and trophic mismatch. Nature, 430, pp.881-884. doi: 10.1038/nature02808.
Fabry, V.J. et al., 2008. Impacts of ocean acidification on marine fauna and ecosystem processes. ICES Journal of Marine Science, 65(3), pp.414-432. doi: 10.1093/icesjms/fsn048.
Falkenhaug, T. et al., 2022. Temporal variability of co-occurring Calanus finmarchicus and C. helgolandicus in Skagerrak. Frontiers in Marine Science, 9, 779335. doi: 10.3389/fmars.2022.779335.
Flores, H. et al., 2012. Impact of climate change on Antarctic krill. Marine Ecology Progress Series, 458, pp.1-19. doi: 10.3354/meps09831.
Fyke, J. et al., 2018. An overview of interactions and feedbacks between ice sheets and the earth system. Reviews of Geophysics, 56(2), pp.361-408. doi: 10.1029/2018RG000600.
Gattuso, J.P. et al., 2018. Ocean solutions to address climate change and its effects on marine ecosystems. Frontiers in Marine Science, 5, 337. doi: 10.3389/fmars.2018.00337.
Geerts, A.N. et al., 2014. Rapid evolution of thermal tolerance in the water flea Daphnia. Nature Climate Change, 5, pp.665-668. doi: 10.1038/nclimate2628.
Gobler, C.J. & Baumann, H., 2016. Hypoxia and acidification in oceans: Synergistic effects on marine biodiversity and fisheries. Biogeosciences, 12(5), 20150976. doi: 10.1098/rsbl.2015.0976.
Gobler, C.J. & Talmage, S.C., 2013. Short- and long-term consequences of larval stage exposure to constantly and ephemerally elevated carbon dioxide for marine bivalve populations. Biogeosciences, 10(4), pp.2241-2253. doi: 10.5194/bg-10-2241-2013.
Hall-Spencer, J. & Harvey, B.P., 2019. Ocean acidification impacts on coastal ecosystem services due to habitat degradation. Emerging Topics in Life Science, 3(2), pp.197-206. doi: 10.1042/ETLS20180117.
Hatlebakk, M. et al., 2022. Contrasting life traits of sympatric Calanus glacialis and C. finmarchicus in a warming Arctic revealed by a year-round study in Isfjorden, Svalbard. Frontiers in Marine Science, 9, 877910. doi: 10.3389/fmars.2022.877910.
Hays, G.C., Richardson, A.J. & Robinson, C., 2005. Climate change and marine plankton. Trends in Ecology & Evolution, 20(6), pp.337-344. doi: 10.1016/j.tree.2005.03.004.
Heneghan, R.F. et al., 2023. Climate-driven zooplankton shifts cause large-scale declines in food quality for fish. Nature Climate Change, 13, pp.470-477. doi: 10.1038/s41558-023-01630-7.
Hoffmann, A.A. & Sgrò, C.M., 2011. Climate change and evolutionary adaptation. Nature, 470, pp.479-485. doi: 10.1038/nature09670.
Houghton, R.A., 2012. Carbon emissions and the drivers of deforestation and forest degradation in the tropics. Current Opinion in Environmental Sustainability, 4(6), pp.597-603. doi: 10.1016/j.cosust.2012.06.006.
Howes, E.L. et al., 2015. An updated synthesis of the observed and projected impacts of climate change on the chemical, physical, and biological processes in the oceans. Frontiers in Marine Science, 2, 36. doi: 10.3389/fmars.2015.00036.
IPCC., 2019. Special Report on the Ocean and Cryosphere in a Changing Climate. Intergovernmental Panel on Climate Change. UK & New York (USA): Cambridge University Press.
Jain, H. et al., 2023. AI-enabled strategies for climate change adaptation: Protecting communities, infrastructure, and businesses from the impacts of climate change. Computational Urban Science, 3, 25. doi: 10.1007/s43762-023-00100-2.
Kalkuhl, M. & Wenz, L., 2020. The impact of climate conditions on economic production. Evidence from a global panel of regions. Journal of Environmental Economics and Management, 103, 102360. doi: 10.1016/j.jeem.2020.102360.
Kebir, Z. et al., 2023. Fifteen research needs for understanding climate change impacts on ecosystems and society in the Norwegian High North. Ambio: A Journal of Environment and Society, 52, pp.1575-1591. doi: 10.1007/s13280-023-01882-9.
Lewis, C.N. et al., 2013. Sensitivity to ocean acidification parallels natural pCO2 gradients experienced by Arctic copepods under winter sea ice. Proceedings of the National Academy of Sciences, 110(51), pp.E4960-E4967. doi: 10.1073/pnas.1315162110.
Li, J., Liu, K. & Huang, Q., 2016. Utilizing cloud computing to support scalable atmospheric modeling: A case study of cloud-enabled modelE. In Cloud Computing in Ocean and Atmospheric Sciences. Academic Press, pp.347-364. doi: 10.1016/B978-0-12-803192-6.00017-7.
López-Pacheco, I.Y. et al., 2021. Phycocapture of CO2 as an option to reduce greenhouse gases in cities: Carbon sinks in urban spaces. Journal of CO2 Utilization, 53, 101704. doi: 10.1016/j.jcou.2021.101704.
Ma, J. et al., 2023. Global review of progress in remote sensing and monitoring of marine pollution. Water, 15(19), 3491. doi: 10.3390/w15193491.
Mackas, D.L. & Beaugrand, G., 2010. Comparisons of zooplankton time series. Journal of Marine Systems, 79(3-4), pp.286-304. doi: 10.1016/j.jmarsys.2008.11.030.
Mangi, S.C. et al., 2018. The economic impacts of ocean acidification on shellfish fisheries and aquaculture in the United Kingdom. Environmental Science & Policy, 86, pp.95-105. doi: 10.1016/j.envsci.2018.05.008.
Marcolin, C.R., Gaeta, S. & Lopes, R.M., 2015. Seasonal and interannual variability of zooplankton vertical distribution and biomass size spectra off Ubatuba, Brazil. Journal of Plankton Research, 37(4), pp.808-819. doi: 10.1093/plankt/fbv035.
Matthews, S.A., Goetze, E. & Ohman, M.D., 2021. Recommendations for interpreting zooplankton metabarcoding and integrating molecular methods with morphological analyses. ICES Journal of Marine Science, 78(9), pp.3387-3396. doi: 10.1093/icesjms/fsab107.
Millette, N.C. et al., 2024. Recommendations for advancing mixoplankton research through empirical-model integration. Frontiers in Marine Science, 11, pp.1-18. doi: 10.3389/fmars.2024.1392673.
Møller, E.F. & Nielsen, T.G., 2020. Borealization of Arctic zooplankton—smaller and less fat zooplankton species in Disko Bay, Western Greenland. Limnology and Oceanography, 65(6), pp.1175-1188. doi: 10.1002/lno.11380.
Morgado, F. & Vieira, L.R., 2020. Biodiversity and biogeography of zooplankton: Implications of climate change. In Climate Action. Encyclopedia of the UN Sustainable Development Goals. Springer, Cham. pp.53-65. doi: 10.1007/978-3-319-95885-9_119.
Nøland, A., 2022. Autonomous Underwater Vehicle (AUV) based study of zooplankton communities, using a silhouette camera and artificial intelligence. Norwegian University of Science and Technology.
Orr, J.C. et al., 2005. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature, 437, pp.681-686. doi: 10.1038/nature04095.
Ospar Commission., 2010, ‘Climate change’, in Quality Status Report 2010, viewed 1 June 2024, from https://qsr2010.ospar.org/en/ch03_01.html
Pörtner, H.O. & Farrell, A.P., 2008. Physiology and climate change. Science, 322(5902), pp.690-692. doi: 10.1126/science.1163156.
Pörtner, H.O. et al., 2014. Ocean systems. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel of Climate Change. UK & New York (USA): Cambridge University Press.
Questel, J.M., Clarke, C. & Hopcroft, R.R., 2013. Seasonal and interannual variation in the planktonic communities of the northeastern Chukchi Sea during the summer and early fall. Continental Shelf Research, 67, pp.23-41. doi: 10.1016/j.csr.2012.11.003.
Raitsos, D.E. et al., 2010. Global climate change amplifies the entry of tropical species into the Eastern Mediterranean Sea. Limnology and Oceanography, 55(4), pp.1478-1484. doi: 10.4319/lo.2010.55.4.1478.
Ratnarajah, L. et al., 2023. Monitoring and modelling marine zooplankton in a changing climate. Nature Communications, 14, 564. doi: 10.1038/s41467-023-36241-5.
Record, N.R., Pershing, A.J. & Maps, F., 2014. The paradox of the “paradox of the plankton”. ICES Journal of Marine Science, 71(2), pp.236-240. doi: 10.1093/icesjms/fst049.
Reusch, T.B.H. & Boyd, P.W., 2013. Experimental evolution meets marine phytoplankton. Evolution, 67(7), pp.1849-1859. doi: 10.1111/evo.12035.
Reygondeau, G. & Beaugrand, G., 2011. Water column stability and Calanus finmarchicus. Journal of Plankton Research, 33(1), pp.119-136. doi: 10.1093/plankt/fbq091.
Richardson, A.J. et al., 2006. Using continuous plankton recorder data. Progress in Oceanography, 68(1), pp.27-74. doi: 10.1016/j.pocean.2005.09.011.
Richardson, A.J. et al., 2009. The jellyfish joyride: Causes, consequences, and management responses to a more gelatinous future. Trends in Ecology & Evolution, 24(6), pp.312-322. doi: 10.1016/j.tree.2009.01.010.
Richardson, A.J., 2008. In hot water: Zooplankton and climate change. ICES Journal of Marine Science, 65(3), pp.279-295. doi: 10.1093/icesjms/fsn028.
Richon, C. et al., 2022. Zooplankton exposure to microplastics at global scale: Influence of vertical distribution and seasonality. Frontiers in Marine Science, 9, 947309. doi: 10.3389/fmars.2022.947309.
Riebeek, H., 2011, ‘The Carbon Cycle’, in NASA Earth Observatory, viewed 1 June 2024, from https://earthobservatory.nasa.gov/features/CarbonCycle
Robison, B.H., 2004. Deep pelagic biology. Journal of Experimental Marine Biology and Ecology, 300(1-2), pp.253-272. doi: 10.1016/j.jembe.2004.01.012.
Safia, M., Abbas, R. & Aslani, M., 2023. Classification of weather conditions based on supervised learning for Swedish cities. Atmosphere, 14(7), 1174. doi: 10.3390/atmos14071174.
Satam, H. et al., 2023. Next-generation sequencing technology: Current trends and advancements. Biology, 12(7), 997. doi: 10.3390/biology12070997.
Sharma, K.V., Sarvalingam, B.K. & Marigoudar, S.R., 2021. A review of mesocosm experiments on heavy metals in marine environment and related issues of emerging concerns. Environmental Science and Pollution Research, 28, pp.1304-1316. doi: 10.1007/s11356-020-11121-3.
Shi, Y. & Li, Y., 2024. Impacts of ocean acidification on physiology and ecology of marine invertebrates: A comprehensive review. Aquatic Ecology, 58, pp.207-226. doi: 10.1007/s10452-023-10058-2.
Sigl, M. et al., 2015. Timing and climate forcing of volcanic eruptions for the past 2,500 years. Nature, 523, pp.543-549. doi: 10.1038/nature14565.
Smith, K. et al., 2014. Human health: Impacts, adaptation, and co-benefits. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 1 ed., pp.709-754. UK & New York (USA): Cambridge University Press.
Søreide, J.E. et al., 2010. Timing of blooms, algal food quality, and Calanus glacialis reproduction and growth in a changing Arctic. Global Change Biology, 16(11), pp.3154-3163. doi: 10.1111/j.1365-2486.2010.02175.x.
Steinberg, D.K. & Landry, M.R., 2017. Zooplankton and the ocean carbon cycle. Annual Review of Marine Science, 9, pp.413-444. doi: 10.1146/annurev-marine-010814- 015924.
Stock, C.A., Dunne, J.P. & John, J.G., 2014. Global-scale carbon and energy flows through the marine planktonic food web: An analysis with a coupled physical-biological model. Progress in Oceanography, 120, pp.1-28. doi: 10.1016/j.pocean.2013.07.001.
Sunday, J.M. et al., 2014. Evolution in an acidifying ocean. Trends in Ecology & Evolution, 29(2), pp.117-125. doi: 10.1016/j.tree.2013.11.001.
Suttle, C.A., 2005. Viruses in the sea. Nature, 437, pp.356-361. doi: 10.1038/nature04160.
Tai, T.C., Sumaila, U.R. & Cheung, W.W.L., 2021. Ocean acidification amplifies multi-stressor impacts on global marine invertebrate fisheries. Frontiers in Marine Science, 8, 596644. doi: 10.3389/fmars.2021.596644.
Todgham, A.E. & Stillman, J.H., 2013. Physiological responses to shifts in multiple environmental stressors: Relevance in a changing world. Integrative and Comparative Biology, 53(4), pp.539-544. doi: 10.1093/icb/ict086.
Voznesensky, M. et al., 2004. Genomic approaches to detecting thermal stress in Calanus finmarchicus (Copepoda: Calanoida). Journal of Experimental Marine Biology and Ecology, 311(1), pp.37-46. doi: 10.1016/j.jembe.2004.04.017.
Wang, X. et al., 2022. Effects of ocean acidification and tralopyril on bivalve biomineralization and carbon cycling: A study of the Pacific Oyster (Crassostrea gigas). Environmental Pollution, 313, 120161. doi: 10.1016/j.envpol.2022.120161.
Weydmann, A. et al., 2017. Mitochondrial genomes of the key zooplankton copepods Arctic Calanus glacialis and North Atlantic Calanus finmarchicus with the longest crustacean non-coding regions. Scientific Reports, 7, 13702. doi: 10.1038/s41598-017-13807-0.
Whitehouse, G.A. et al., 2021. Bottom-up impacts of forecasted climate change on the Eastern Bering Sea food web. Frontiers in Marine Science, 8, 624301. doi: 10.3389/fmars.2021.624301.
Wiebe, P.H. & Benfield, M.C., 2003. From the Hensen net toward four-dimensional biological oceanography. Progress in Oceanography, 56(1), pp.7-136. doi: 10.1016/S0079-6611(02)00140-4.
Wunderling, N. et al., 2024. Climate tipping point interactions and cascades: A review. Earth System Dynamics, 15(1), pp.41-74. doi: 10.5194/esd-15-41-2024.
Xu, J. et al., 2024. Long-term trends and extreme events of marine heatwaves in the Eastern China Marginal Seas during summer. Frontiers in Marine Science, 11, 1380963. doi: 10.3389/fmars.2024.1380963.
Yang, J. et al., 2017. Indigenous species barcode database improves the identification of zooplankton. PLoS ONE, 12(10), e185697. https://doi. org/10.1371/journal.pone.0185697.
Zardi, D., 2024. Atmosphere and ocean interactions. Rendiconti Lincei. Scienze Fisiche e Naturali, 35, pp.311-325. doi: 10.1007/s12210-024-01243-y.
Zhou, J. et al., 2020. Long-term variation of zooplankton communities in a large, heterogenous lake: Implications for future environmental change scenarios. Environmental Research, 187, 109704. doi: 10.1016/j.envres.2020.109704.