The Complete Mitochondrial Genome of Critically Endangered Painted Terrapin, Batagur borneoensis (Testudines: Geoemydidae)

  • Nor Ainsyafikah Madiran School of Animal Science, Aquatic Science and Environment, Faculty of Bioresources and Food Industry, UniSZA Besut Campus, 22200 Besut, Terengganu, Malaysia https://orcid.org/0000-0003-4255-3060
  • Han Ming Gan Patriot Biotech Sdn Bhd, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia https://orcid.org/0000-0001-7987-738X
  • Shahreza Md Sheriff Faculty of Fisheries and Food Sciences, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia https://orcid.org/0000-0002-3511-2323
  • Aliyu Garba Khaleel Department of Animal Science, Faculty of Agriculture and Agricultural Technology, Kano University of Science and Technology, Wudil, P.M.B. 3244 Kano State, Nigeria https://orcid.org/0000-0002-8135-2045
  • Muhammad Zaid Nasir WWF Setiu Field Office, Lot 10575, Tanah Lot, Kg. Pagar Besi, 21020 Kuala Terengganu, Terengganu, Malaysia
  • Chik Maslinda Omar WWF Setiu Field Office, Lot 10575, Tanah Lot, Kg. Pagar Besi, 21020 Kuala Terengganu, Terengganu, Malaysia
  • Mohamad Zulkarnain Mohd Dali School of Animal Science, Aquatic Science and Environment, Faculty of Bioresources and Food Industry, UniSZA Besut Campus, 22200 Besut, Terengganu, Malaysia https://orcid.org/0000-0001-7056-7959
  • Muhammad Syafiq Aiman Mohd Nasir School of Animal Science, Aquatic Science and Environment, Faculty of Bioresources and Food Industry, UniSZA Besut Campus, 22200 Besut, Terengganu, Malaysia https://orcid.org/0000-0001-5418-6793
  • Norshida Ismail School of Animal Science, Aquatic Science and Environment, Faculty of Bioresources and Food Industry, UniSZA Besut Campus, 22200 Besut, Terengganu, Malaysia https://orcid.org/0000-0001-8178-2726
  • Ahmad Syazni Kamarudin School of Animal Science, Aquatic Science and Environment, Faculty of Bioresources and Food Industry, UniSZA Besut Campus, 22200 Besut, Terengganu, Malaysia https://orcid.org/0000-0002-5529-2974
Keywords: Batagur borneoensis, Conservation, Genetic diversity, Mitogenome, Next-generation sequencing

Abstract

Characterising mitochondrial genomes is a key to studying evolution in vertebrates including turtles. This study employed Next-Generation Sequencing (NGS) to characterise mitochondrial DNA sequences in Batagur borneoensis (Schlegel & Muller, 1844). We reported the nearly complete mitogenome to clearly characterise the gene sequence of B. borneoensis which has been deposited in GenBank under the accession number PP228865. Phylogenetic analyses using Maximum Likelihood (ML) on the 13 protein-coding genes were conducted with MEGA X Version 11 software. This study presents the second in-depth analysis of the B. borneoensis mitochondrial genome, spanning 16,397 base pairs and containing 13 protein-coding genes, 22 transfer RNAs (tRNAs), two ribosomal RNAs (rRNAs), and a major non-coding region, two non-coding regions: L-strand origin replication (OL) and control region (OH). The sequence length and organisation of this species' mitochondrial genome fall within the typical range and gene arrangement found in vertebrate species. Most genes, except for seven tRNAs and nad6, were encoded on the primary DNA strand. All protein-coding genes (PCGs) began with an ATG initiation codon, except for cox1 and trnF which started with GTG codon, and nad3_0, started with a TTA codon. These findings enhanced our understanding of nucleotide composition and molecular evolution in the genus Batagur. Phylogenetic analyses identified vulnerable and ecologically important species, aiding biodiversity and ecosystem protection. They also expanded the dataset for comparative studies within the Geoemydidae family. Additionally, this research may help develop primers and conservation strategies for future studies.

References

Anderson, S. et al., 1981b. Sequence and organization of the human mitochondrial genome. Nature, 290(5806), pp.457–465. doi.org/10.1038/290457a0

Bernt, M. et al., 2013. MITOS: Improved de novo metazoan mitochondrial genome annotation. Molecular Phylogenetics and Evolution, 69(2), pp.313–319. doi: 10.1016/j.ympev.2012.08.023

Boore, J.L., 1999. Animal mitochondrial genomes. Nucleic Acids Research, 27(8), pp.1767–1780. doi: 10.1093/nar/27.8.1767

Chen, Y. et al., 2018. SOAPnuke: a Map Reduce acceleration-supported software for integrated quality control and preprocessing of high-throughput sequencing data. GigaScience, 7(1), pp.1-6. doi: 10.1093/gigascience/gix120.

Fernández-Silva, P., Enriquez, J.A. & Montoya, J., 2003. Replication and transcription of mammalian mitochondrial DNA. Experimental physiology, 88(1), pp.41-56. doi: 10.1113/eph8802514.

Hernawan, E. et al., 2018. Literature Review: Distribution, Ecology, History and Conservation of Painted Terrapin (Batagur borneoensis Schlegel and Muller 1845) in Indonesia. International Journal of Sciences: Basic and Applied Research, 42(5), pp.199-209.

Iwasaki, W. et al., 2013. MitoFish and MitoAnnotator: A mitochondrial genome database of fish with an accurate and automatic annotation pipeline. Molecular Biology and Evolution, 30(11), pp.2531–2540. doi: 10.1093/molbev/mst141

Kalyaanamoorthy, S. et al., 2017. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nature Methods, 14, pp.587–589. doi: 10.1038/nmeth.4285

Kolandaiveloo, V. et al., 2020. Endoscopy gender determination and reproductive hormone profiles of Painted Terrapins (Batagur borneoensis) subjected to ex situ incubation. Journal of Veterinary Medical Science, 82(4), pp.497–502. doi: 10.1292/jvms.19-0477

Kumar, S. et al., 2018. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Molecular Biology and Evolution, 35(6), pp.1547–1549. doi: 10.1093/molbev/msy096

Kumar, S., Stecher, G. & Tamura, K., 2016. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for bigger datasets. Molecular Biology and Evolution, 33(7), pp.1870–1874. doi: 10.1093/molbev/msw054

Kundu, S. et al., 2019. The first complete mitochondrial genome of the Indian Tent Turtle, Pangshura tentoria (Testudines: Geoemydidae): Characterization and comparative analysis. Ecology and Evolution, 9(18), pp.10854–10868. doi: 10.1002/ece3.5606

Kundu, S. et al., 2020. The complete mitochondrial genome of the endangered Assam Roofed Turtle, Pangshura sylhetensis (Testudines: Geoemydidae): Genomic features and phylogeny. PLoS ONE, 15(4), e0225233. doi: 10.1371/journal.pone.0225233

Li, D. et al., 2015. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics, 31(10), pp.1674–1676. doi: 10.1093/bioinformatics/btv033

Lourenço, J.M. et al., 2012. Dating cryptodiran nodes: Origin and diversification of the turtle superfamily Testudinoidea. Molecular Phylogenetics and Evolution, 62(1), pp.496–507. doi: 10.1016/j.ympev.2011.10.022

Nei, M. & Kumar, S., 2000. Molecular Evolution and Phylogenetics. New York: Oxford University Press.

Nguyen, L.T. et al., 2015. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum likelihood phylogenies. Molecular Biology and Evolution, 32(1), pp.268-274. doi: 10.1093/molbev/msu300

Oberacker, P. et al., 2019. Bio-On-Magnetic-Beads (BOMB): Open platform for high-throughput nucleic acid extraction and manipulation. PLoS Biology, 17(1), e3000107. doi: 10.1371/journal.pbio.3000107

Rambaut, A., 2018. FigTree v1.4.4. Institute of Evolutionary Biology, University of Edinburgh.

Satam, H. et al., 2023. Next-Generation Sequencing Technology: Current Trends and Advancements. Biology (Basel), 12(7), 997. doi: 10.3390/biology12070997. Correction published in Biology (Basel), 13(5), pp.286. doi: 10.3390/biology13050286.

Sokefun, O., 2022. DNA barcode analysis of the endangered green turtle (Chelonia mydas) in the breeding grounds of Badagry, Lagos, Nigeria. Acta Entomology and Zoology, 3(2), pp.40–43. doi: 10.33545/27080013.2022.v3.i2a.75

Sturk-Andreaggi, K. et al., 2022. The Value of Whole-Genome Sequencing for Mitochondrial DNA Population Studies: Strategies and Criteria for Extracting High-Quality Mitogenome Haplotypes. International Journal of Molecular Sciences, 23(4), 2244. doi: 10.3390/ijms23042244

Tamura, K., Stecher, G. & Kumar, S., 2021. MEGA 11: Molecular Evolutionary Genetics Analysis Version 11. Molecular Biology and Evolution, 38(7), pp.3022-3027. doi: 10.1093/molbev/msab120.

Toomey, D., 2016, ‘Pulling the stunningly unique painted terrapin back from the brink’, in Mongabay News & Inspiration from Nature’s Frontline, viewed from https://news.mongabay.com/2016/08/pulling-the-stunningly-beautiful-painted-terrapin-back-from-the-brink/

Zhang, L. et al., 2021. Complete mitochondrial genomes reveal robust phylogenetic signals and evidence of positive selection in horseshoe bats. BMC Ecology and Evolution, 21(1), 199. doi: 10.1186/s12862-021-01926-2

Published
2025-02-24
How to Cite
Nor Ainsyafikah Madiran, Han Ming Gan, Shahreza Md Sheriff, Aliyu Garba Khaleel, Muhammad Zaid Nasir, Chik Maslinda Omar, Mohamad Zulkarnain Mohd Dali, Muhammad Syafiq Aiman Mohd Nasir, Norshida Ismail and Ahmad Syazni Kamarudin (2025) “The Complete Mitochondrial Genome of Critically Endangered Painted Terrapin, Batagur borneoensis (Testudines: Geoemydidae)”, Journal of Tropical Biodiversity and Biotechnology, 10(1), p. jtbb13529. doi: 10.22146/jtbb.13529.
Section
Research Articles