Utilising Plant Extracts as Lures to Capture Ambrosia Beetles (Coleoptera: Curculionidae) in Cocoa Plantation
Abstract
The ambrosia beetle (Coleoptera: Curculionidae) is a significant pest affecting cocoa plants in South Sulawesi. The high intensity of their attacks poses a serious threat to cocoa production, causing plants to wilt and die. This study developed traps baited with active ingredient compounds from various plant species, including coffee, carrot leaves, fermented cocoa wood, and eucalyptus oil, and compared their efficacy with ethanol. Beetles collected in these traps were identified based on morphological characteristics using a stereo microscope. The attraction test results indicated that all treatments successfully attracted ambrosia beetles, with ethanol capturing the highest number of individuals (1391). The results showed that ethanol and other extracts could capture ambrosia beetles of various kinds. The highest number of captures was found in ethanol and carrot leaf extract treatments. Additionally, eleven species were identified: Coccotrypes sp., Diuncus quadrispinulosus, Eccoptopterus spinosus, Hypothenemus sp. 1, Hypothenemus sp. 2, Hypothenemus sp. 3, Xyleborus affinis, Xylosandru s mancus, Xylosandrus crassiusculus, Xylosandrus eupatorii, and Xylosandrus morigerus. Traps baited with carrot leaf extract were most effective in capturing Hypothenemus sp. 3. These findings underscore the importance of developing various attractant traps utilising plant chemical compounds to detect and identify ambrosia beetle species and mitigate severe crop damage.
References
Asman, A. et al., 2021. The occurrence of Xylosandrus compactus and its associated fungi on cacao from South Sulawesi, Indonesia: A preliminary study of an emerging threat to the cacao industry. Journal of Plant Diseases and Protection, 128(1), pp.303–309. doi: 10.1007/s41348-020-00387-x.
Bhattacharjee, R. & Akoroda, M., 2018. Taxonomy and classification of cacao. In Burleigh Dodds Series in Agricultural Science. Burleigh Dodds Science Publishing, pp.3–18. doi: 10.19103/as.2017.0021.01.
Blando, F. et al., 2021. Bioactive Compounds and Antioxidant Capacity in Anthocyanin-Rich Carrots: A Comparison between the Black Carrot and the Apulian Landrace “Polignano” Carrot. Plants, 10(3), 564. doi: 10.3390/plants10030564
Cavaletto, G. et al., 2021. Ambrosia beetle response to ethanol concentration and host tree species. Journal of Applied Entomology, 145(8), pp.800-809. doi: 10.1111/jen.12895.
Cavaletto, G. et al., 2023. Species-specific effects of ethanol concentration on host colonization by four common species of ambrosia beetles. Journal of Pest Science, 96(2), pp.833–843. doi: 10.1007/s10340-022-01537-w.
Dinnage, R. et al., 2012. Diversity of plant evolutionary lineages promotes arthropod diversity. Ecology Letters, 15(11), pp.1308–1317. doi: 10.1111/j.1461-0248.2012.01854.x.
Dzurenko, M. & Hulcr, J., 2022. Ambrosia beetles. Current Biology, 32(2), pp.R61–R62. doi: 10.1016/j.cub.2021.11.043.
Galko, J. et al., 2014. Attraction of ambrosia beetles to ethanol baited traps in a Slovakian oak forest. Biologia, 69, pp.1376–1383. doi: 10.2478/s11756-014-0443-z.
Graham, K., 1968. Anaerobic induction of primary chemical attractancy for ambrosia beetles. Canadian Journal of Zoology, 46(5), pp.905–908. doi: 10.1139/z68-127.
Haddad, N.M. et al., 2001. Contrasting effects of plant richness and composition on insect communities: A field experiment. American Naturalist, 158(1), pp.17–35. doi: 10.1086/320866.
Hulcr, J. et al., 2007. Host specificity of ambrosia and bark beetles (Col., Curculionidae: Scolytinae and Platypodinae) in a New Guinea rainforest. Ecological Entomology, 32(6), pp.762–772. doi: 10.1111/j.1365-2311.2007.00939.x.
Hulcr, J. et al., 2015. Morphology, Taxonomy, and Phylogenetics of Bark Beetles. In Bark Beetles: Biology and Ecology of Native and Invasive Species. Academic Press, pp.41-84. doi: 10.1016/B978-0-12-417156-5.00002-2.
Kelsey, R.G. et al., 2014. Ethanol accumulation during severe drought may signal tree vulnerability to detection and attack by bark beetles. Canadian Journal of Forest Research, 44(6), pp.554–561. doi: 10.1139/cjfr-2013-0428.
Kendra, P.E. et al., 2014. North American Lauraceae: Terpenoid emissions, relative attraction and boring preferences of redbay ambrosia beetle, Xyleborus glabratus (Coleoptera: Curculionidae: Scolytinae). PLoS ONE, 9(7), e102086. doi: 10.1371/journal.pone.0102086.
Kimmerer, T.W. & Stringer, M.A., 1988. Alcohol Dehydrogenase and Ethanol in the Stems of Trees. Plant Physiology, 87(3), pp.693–697. doi: 10.1104/pp.87.3.693.
Kirkendall, L.R., Biedermann, P.H.W. & Jordal, B.H., 2015. Evolution and Diversity of Bark and Ambrosia Beetles. In Bark Beetles: Biology and Ecology of Native and Invasive Species. Academic Press, pp.85-156. doi: 10.1016/B978-0-12-417156-5.00003-4.
Komala, G., Manda, R.R. & Seram, D., 2021. Role of Semiochemicals in Integrated Pest Management. In Integrated Pest Management: Current Concepts and Ecological Perspective. Academic Press, pp.93-109. doi: 10.1016/B978-0-12-398529-3.00007-5
Kuhns, E.H. et al., 2014. Eucalyptol is an Attractant of the Redbay Ambrosia Beetle, Xyleborus Glabratus. Journal of Chemical Ecology, 40(4), pp.355–362. doi: 10.1007/s10886-014-0427-z.
Lehenberger, M., Benkert, M. & Biedermann, P.H.W., 2021. Ethanol-Enriched Substrate Facilitates Ambrosia Beetle Fungi, but Inhibits Their Pathogens and Fungal Symbionts of Bark Beetles. Frontiers in Microbiology, 11, 590111. doi: 10.3389/fmicb.2020.590111.
Maner, M.L., Hanula, J.L. & Braman, S.K., 2013. Gallery productivity, emergence, and flight activity of the redbay ambrosia beetle (Coleoptera: Curculionidae: Scolytinae). Environmental Entomology, 42(4), pp.642–647. doi: 10.1603/EN13014.
Mazon, M. & Gaviria, J., 2013. Effectiveness of different trap types for control of bark and ambrosia beetles ( Scolytinae ) in Criollo cacao farms of Mérida, Venezuela. International Journal of Pest Management, 59(3), pp.189-196. doi: 10.1080/09670874.2013.810794.
Ministry of Agriculture, 2022. STATISTIK-UNGGULAN-2020-2022.
Norin, T., 2001. Pheromones and kairomones for control of pest insects. Some current results from a Swedish research program. Pure and Applied Chemistry, 73(3), pp.607–612. doi: 10.1351/pac200173030607
Poudel, A. et al., 2023. Ambrosia Beetles Important to Tennessee Nurseries. Extension Publications, 179. Tennessee State University
Ranger, C.M. et al., 2015. Non-native ambrosia beetles as opportunistic exploiters of living but weakened trees. PLoS ONE, 10(7), e0131496. doi: 10.1371/journal.pone.0131496.
Ranger, C.M. et al., 2018. Symbiont selection via alcohol benefits fungus farming by ambrosia beetles. Proceedings of the National Academy of Sciences of the United States of America, 115(17), pp.4447–4452. doi: 10.1073/pnas.1716852115.
Rivay, M.A. et al., 2023. Plant extract as kairomone attractant to cocoa pod borer, Conopomorpha cramerella (Snellen) (Lepidoptera: Gracillariidae) in cocoa farm. IOP Conference Series: Earth and Environmental Science, 1230, 012113. doi: 10.1088/1755-1315/1230/1/012113.
Rohman, M.T., 2020. Referensi Kumbang Ambrosia Platypus sp. (Coleoptera: Platypodidae) terhadap Lapisan Kayu Tanaman Sono Kembang (Pterocarpus indicus Willd.). Jurnal AgroSainTa: Widyaiswara Mandiri Membangun Bangsa, 4(1), pp.48–53. doi: 10.51589/ags.v4i1.13.
Siregar, A., 2016. Bio-Ecology of H.Hampei in Coffee Plantation in Sumbul and Sidikalang Districts, Northern of Sumatera, Indonesia. International Journal of Advanced Research, 4(11), pp.2051–2058. doi: 10.21474/ijar01/2310.
Smith, S.M., Beaver, R.A. & Cognato, A.I., 2020. A monograph of the Xyleborini ( Coleoptera , Curculionidae , Scolytinae ) of the Indochinese Peninsula ( except Malaysia ) and China. Zookeys, 983, pp.1–442. doi: 10.3897/zookeys.983.52630.
Triplehorn, C.A, Johnson, N.F. & Borror, D.J., 2005. Borror and DeLong’s Introduction to the study of Insect. Thompson Brooks/Cole.
Vega, F.E., Infante, F. & Johnson, A.J., 2015. The Genus Hypothenemus, with Emphasis on H. hampei, the Coffee Berry Borer. In Bark Beetles: Biology and Ecology of Native and Invasive Species. Academic Press, pp.427-494. doi: 10.1016/B978-0-12-417156-5.00011-3.
Witzgall, P., Kirsch, P. & Cork, A., 2010. Sex Pheromones and Their Impact on Pest Management. Journal of Chemical Ecology, 36, pp.80-100. doi: 10.1007/s10886-009-9737-y.
Wood, S.L., 2007. Bark and ambrosia beetles of South America (Coleoptera, Scolytidae). Brigham Young University.
Yemima, R. & Novianti, T., 2020. Competitiveness and Determinant of Indonesian Processed Cocoa Demand in the AANZFTA Framework. Jurnal Ilmu Ekonomi Terapan, 5(1), pp. 13-23. doi: 10.20473/jiet.v5i1.19627.