Stand Structure Characteristics of Fragmented and Primary Forests and Their Correlation to Carbon Stocks

  • Afifi Nazeri Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia.
  • Ismail Jusoh Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia. https://orcid.org/0000-0002-7087-6871
  • Mohamad Hasnul Bolhassan Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia. https://orcid.org/0000-0003-0466-9791
Keywords: Carbon stock, Forest fragments, Species dominance, Stand parameters, Tree diameter

Abstract

Stand structure contributes to forest biodiversity and productivity. The disparity of stand structure between fragmented and primary forests and how they affect carbon storage are poorly understood. This study determined differences among some stand parameters in fragmented and primary forests and the correlation between forest stand structure and carbon stock. Twenty-five replicate quadrats were established in Bukit Durang and Division 5, representing the fragmented forests, and Lambir Hills National Park and Kubah National constitute the primary forests. All trees with diameter at breast height of 10 cm and above were measured, and the tree species were recorded. Aboveground biomass was calculated and converted to carbon stock. Statistical analyses showed that tree density is comparable among the forests. However, species abundance, species dominance, basal area aboveground biomass, and carbon stocks are different . Large-diameter trees significantly contribute to carbon storage. Principal component analyses revealed basal area, tree diameter and carbon stock were positively intercorrelated and associated. Species dominance and tree density are intercorrelated and strongly associated. Conversely, the number of species is negatively correlated to species dominance and tree density. This study showed the significance of tree diameter in impacting carbon stock.

References

Abbas, S. et al., 2020. Approaches of satellite remote sensing for the assessment of aboveground biomass across tropical forests: Pan-tropical to national scales. Remote Sens., 12(20), 3351. doi: 10.3390/rs12203351.

Abdullah, S.A., 2016. Quantifying forest fragmentation spatial process in the developing State of Selangor, peninsular Malaysia. J Land Use Sci, 11(3), 294−309. doi: 10.1080/1747423X.2014.947641

Altman, J. et al., 2016. Linking spatiotemporal disturbance history with tree regeneration and diversity in an old-growth forest in northern Japan. Perspect. Plant Ecol. Evol. Syst. 21, pp.1−13. doi: 10.1016/j.ppees.2016.04.003.

Anjum, J. et al., 2022. Carbon sequestration: An Approach to Sustainable Environment. In Microbial and Biotechnological Interventions in Bioremediation and Phytoremediation. Springer, Cham. doi: 10.1007/978-3-031-08830-8_18.

Banoho, L.P.R.K. et al., 2020. Biodiversity and carbon sequestration potential in two types of tropical rainforest, Cameroon. Acta Oecol., 105, 103562. doi: 10.1016/j.actao.2020.103562.

Baynes, J. et al., 2016. Effects of fragmentation and landscape variation on tree diversity in post-logging regrowth forests of the Southern Philippines. Biodivers Conserv, 25, pp.923–941. doi: 10.1007/s10531-016-1098-6.

Berenguer, E. et al., 2014. A large-scale field assessment of carbon stocks in human‐modified tropical forests. Glob Chang Biol., 20(12), pp.3713−3726. doi: 10.1111/gcb.12627.

Bordin, K.M. et al., 2021. Climate and large-sized trees, but not diversity, drive above- ground biomass in subtropical forests. For. Ecol. Manag., 490, 119126. doi: 10.1016/j.foreco.2021.119126.

Bradford, M. & Murphy, H.T., 2019. The importance of large-diameter trees in the wet tropical rainforests of Australia. Plos One, 14(5), e0208377. doi: 10.1371/journal.pone.0208377.

Buckland, S.T. et al., 2015. Distance Sampling: Methods and Applications. Method in Statistical Ecology, Springer International Publishing.

Camargo, J.L.C. & Kapos, V., 1995. Complex Edge Effects on Soil-Moisture and Microclimate in Central Amazonian. J. Trop. Ecol., 11(2), 205–221. doi: 10.1017/S026646740000866X.

Chaplin-Kramer, R. et al., 2015. Degradation in carbon stocks near tropical forest edges. Nat Commun 6, 10158. doi: 10.1038/ncomms10158.

Chave, J. et al., 2005. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia, 145, pp.87−99. doi: 10.1007/s00442-005-0100-x.

Deemer, B.R. et al., 2016. Greenhouse gas emissions from reservoir water surfaces: a new global synthesis. BioScience, 66, pp.949–964. doi: 10.1093/biosci/biw117.

Demies, M. et al., 2019. Tree diversity, forest structure and species composition in a logged-over mixed dipterocarp forest, Bintulu, Sarawak, Malaysia. Transaction on Science and Technology, 6(1-2), pp.102-110.

de Paula, M.D. et al., 2011. Carbon storage in a fragmented landscape of Atlantic forest: the role played by edge-affected habitats and emergent trees. Trop Conservation Sci., 4(3), pp.349–358. doi: 10.1177/194008291100400310.

Dignac, M.F. et al., 2017. Increasing soil carbon storage: mechanisms, effects of agricultural practices and proxies. A review. Agron. Sustain. Dev., 37, 14. doi: 10.1007/s13593-017-0421-2.

Diway, B.M., Chai, P.K. & Blum, M., 2009. A study on the vegetation of Batang Ai National Park, Sarawak, Malaysia (Part 2). In ITTO Project PD 288/04 Rev. 2 (F) Development of Lanjak Entimau Wildlife Sanctuary as a totally protected area, Phase IV (Final Phase). International Tropical Timber Organisation, Forest Department Sarawak & Sarawak Forestry Corporation.

Djomo, A.N. et al., 2017. Variation of wood density in tropical rainforest trees. Journal of Forests, 4(2), pp.16−26. doi: 10.18488/journal.101.2017.42.16.26.

Djuikouo, M.N.K. et al., 2014. Stand structure and species co-occurrence in mixed and monodominant Central African tropical forests. J. Trop. Ecol., 30(5), pp.447−455. doi: 10.1017/S0266467414000352.

Dossa, G.G.O. et al., 2013. Factors determining forest diversity and biomass on a tropical volcano, Mt. Rinjani, Lombok, Indonesia. PLoS One, 8(7), e67720. doi: 10.1371/journal.pone.0067720

Ellis, P.W. et al., 2019. Reduced-impact logging for climate change mitigation (RIL-C) can halve selective logging emissions from tropical forests. For. Ecol. Manag., 438, pp.255−266. doi: 10.1016/j.foreco.2019.02.004.

Feeley, K.J. & Silman, M.R., 2011. The data void in modeling current and future distributions of tropical species. Glob. Change Biol., 17(1), 626 – 630. doi: 10.1111/j.1365-2486.2010.02239.x.

Francis, E.J. et al., 2017. Quantifying the role of wood density in explaining interspecific variation in growth of tropical trees. Glob. Ecol. Biogeogr., 26(10), pp.1078−1087. doi: 10.1111/geb.12604.

Friedlingstein, P. et al., 2019. Global carbon budget 2019. Earth Syst. Sci. Data 11, pp.1783−1838. doi: 10.5194/essd-11-1783-2019.

Gebeyehu, G. et al., 2019. Species composition, stand structure, and regeneration status of tree species in dry Afromontane forests of Awi Zone, northwestern Ethiopia. Ecosys Health Sust, 5(1), pp.199−215. doi: 10.1080/20964129.2019.1664938.

Global Resource Institute. 2023. Forest Carbon Stocks. Global Forest Review, viewed 10 August 2022, from http:// www.globalforestwatch.org/en/gfr/forest-carbon-stocks.

Gobilik, J. 2016. Stand structure and tree composition of Timbah Virgin Jungle Reserve, Sabah, Malaysia. J. Trop. Biol. Conserv., 4(1), pp.55−66.

Gross, M. 2020. Forests in a Warming World. Curr Biol, 30(12), R677-R679. doi: 10.1016/j.cub.2020.06.004.

Guo, Z., Wang, X. & Fan, D., 2021. Ecosystem functioning and stability are mainly driven by stand structural attributes and biodiversity, respectively, in a tropical forest in Southwestern China. For. Ecol. Manag., 481, 118696. doi: 10.1016/j.foreco.2020.118696.

Hayat, M.A. & Abd Kudus, K., 2010. Assessment of plant species diversity at Pasir Tengkorak forest reserve, Langkawi Island, Malaysia. J. Agric. Sci., 2(1), pp.31−38. doi: 10.5539/jas.v2n1p31.

Hayward, R.M. et al., 2021. Three decades of post-logging tree community recovery in naturally regenerating and actively restored dipterocarp forest in Borneo. For. Ecol. Manag., 488, 119036. doi: 10.1016/j.foreco.2021.119036.

Hazebroek, H.P. & Abang Kashim, A,M., 2001. National Parks of Sarawak. Kota Kinabalu: National History Publications (Borneo) Sdn Bhd, Kota Kinabalu.

Hending, D. et al., 2023. Forest fragmentation and its associated edge-effects reduce tree species diversity, size, and structural diversity in Madagascar’s transitional forests. Biodivers Conserv, 32, 3329–3353. doi: 10.1007/s10531-023-02657-0.

Hofhansl, F. et al., 2020. Climatic and edaphic controls over tropical forest diversity and vegetation carbon storage. Sci. Rep., 10(1), 5066. doi: 10.1038/s41598-020-61868-5.

ICRAF, 2007. International Council for Research in Agroforestry Wood Density Database. World Agroforestry Centre, Nairobi, Kenya.

Isa, N.N.M., Said, I. & Reba, M.N.M., 2015. Community structure, diversity and total aboveground biomass of four pioneer species at Universiti Teknologi Malaysia Secondary Forest. American Journal Environmental Engineering, 5(3A), pp.26−32. doi: 10.5923/c.ajee.201501.05.

Jeyanny, V. et al., 2014. Carbon stocks in different carbon pools of a tropical lowland forest and a montane forest with varying topography. J. Trop. For. Sci., 26(4), pp.::560−571.

Johnston, J.D. et al., 2021. Commentary: large trees dominate carbon storage in forests east of the Cascade Crest in the United States Pacific Northwest. Front. For. Glob. Change, 4, 653774. doi: 10.3389/ffgc.2021.653774.

Joshi, R.K. & Dhyani, S. 2019. Biomass, carbon density and diversity of tree species in tropical dry deciduous forests in Central India. Acta Ecologica Sinica, 39(4), 289−299. doi: 10.1016/j.chnaes.2018.09.009.

Kauppi, P.E. et al., 2015. Effects of land management on large trees and carbon stocks. Biogeosciences, 12(3), pp.855−862. doi: 10.5194/bg-12-855-2015.

Kenzo, T. et al., 2015. Aboveground and belowground biomass in logged-over tropical rain forests under different soil conditions in Borneo. J. Fo. Res., 20(1), pp. 197−205. doi: 10.1007/s10310-014-0465-y.

Khan, W.R. et al., 2017. Reflection of stable isotopes and selected elements with the inundation gradient at the Matang Mangrove Forest Reserve (MMFR), Malaysia. Int. For. Rev., 19(S3), pp.1−10.

Köhl, M., Neupane, P.R. & Lotfiomran, N., 2017. The impact of tree age on biomass growth and carbon accumulation capacity: A retrospective analysis using tree ring data of three tropical tree species grown in natural forests of Suriname. Plos One, 12(8), e0181187. doi: 10.1371/journal.pone.0181187.

Lal, R., 2018. Climate change and the global soil carbon stocks. In Soil and Climate. CRC Press, Boca Raton, Florida, USA. doi: 10.1201/b21225.

Lasky, J.R. et al., 2014. Trait mediated assembly processes predict successional changes in community diversity of tropical forests. Proc. Natl. Acad. Sci., 111(15), pp.5616−5621. doi: 10.1073/pnas.1319342111.

Li, S. et al., 2018. Large Greenhouse Gases Emissions from China's Lakes and Reservoirs. Water Res., 147, 13-24. doi: 10.1016/j.watres.2018.09.053.

Lindenmayer, D.B. et al., 2014. New policies for old trees: averting a global crisis in a keystone ecological structure. Conserv. Lett., 7(1), pp.61−69. doi: 10.1111/conl.12013.

Ling, C.Y. & Julia, S., 2012. Diversity of the tree flora in Semenggoh Arboretum, Sarawak, Borneo. Gard. Bull. Singapore, 64(1), pp.139−169.

Longo, M. et al., 2016. Aboveground biomass variability across intact and degraded forests in the Brazilian Amazon. Global Biogeochem. Cycles, 30(11), pp.1639−1660. doi: 10.1002/2016GB005465.

Lutz, J.A. et al., 2018. Global importance of large‐diameter trees. Glob. Ecol. Biogeogr., 27(7), pp.849−864. doi: 10.1111/geb.12747.

Ma, Y. et al., 2023. Precipitation and Temperature Influence the Relationship between Stand Structural Characteristics and Aboveground Biomass of Forests - A Meta-Analysis. Forests, 14(5), 896. doi: 10.3390/f14050896.

MacKinnon, K. et al., 1997. The ecology of Kalimantan. Oxford University Press.

McLaughlin, H. et al., 2023. Carbon capture utilization and storage in review: Sociotechnical implications for a carbon reliant world. Renew. Sustain. Energy Rev., 177, 113215.

Magalhães, J.G.D.S., Amoroso, M.M. & Larson, B.C. 2021. What evidence exists on the effects of competition on trees' responses to climate change? A systematic map protocol. Environ Evid, 10(1), 34. doi: 10.1186/s13750-021-00249-5.

Malaysia Meteorological Department, 2020, ‘Annual Report 2020’, in Malaysia Meteorological Department, viewed 6 March 2023, from https://www.met.gov.my/en/penerbitan/laporan-tahunan/.

Matthew, N.K. et al., 2018. Carbon stock and sequestration valuation in a mixed dipterocarp forest of Malaysia. Sains Malaysiana, 47(3), pp.447−455. doi: 10.17576/jsm-2018-4703-04.

Maxwell, S.L. et al., 2019. Degradation and forgone removals increase the carbon impact of intact forest loss by 626%. Sci. Adv., 5. doi: 10.1126/sciadv.aax2546.

Mensah, S., Noulekoun, F, & Ago, E.E. 2020. Aboveground tree carbon stocks in West African semi-arid ecosystems: Dominance patterns, size class allocation and structural drivers. Glob. Ecol. Conserv., 24, e01331. doi: 10.1016/j.gecco.2020.e01331.

Mildrexler, D.J. et al., 2020. Large trees dominate carbon storage in forests east of the cascade crest in the United States Pacific Northwest. Front. For. Glob. Change 3, 594274. doi: 10.3389/ffgc.2020.594274.

Mills, M.B. et al., 2023. Tropical forests post-logging is a persistent net carbon source to the atmosphere. Proc. Natl. Acad. Sci., 120(3), e2214462120. doi: 10.1073/pnas.2214462120.

Nave, L.E. et al., 2019. The role of reforestation in carbon sequestration. New Forests, 50(1), pp.115−137. doi: 10.1007/s11056-018-9655-3.

Ngo, K.M. et al., 2013. Carbon stocks in primary and secondary tropical forests in Singapore. For. Ecol. Manag., 296: pp.81−89. doi: 10.1016/j.foreco.2013.02.004.

Nunes, M.H. et al., 2021. Recovery of logged forest fragments in a human-modified tropical landscape during the 2015-16 El Niño. Nat Commun, 12, 1526. doi: 10.1038/s41467-020-20811-y.

Oliveira, M.A. et al., 2008. Profound Impoverishment of the Large Tree Stands in a Hyper-Fragmented Landscape of the Atlantic Forest. For. Ecol. Manag., 256(11), 1910. doi: 10.1016/j.foreco.2008.07.014.

Onrizal, O. & Auliah, N.L. 2020. Stand structure and carbon storage of Bukit Lawang's tropical rain forest of Gunung Leuser National Park. J. Phys.: Conf. Ser., 1542, 012061. doi: 10.1088/1742-6596/1542/1/012061.

Pérez-Cruzado, C. et al., 2012. Influence of tree species on carbon sequestration in afforested pastures in a humid temperate region. Plant and soil, 353, pp.333−353. doi: 10.1007/s11104-011-1035-0.

Petersson, H. et al., 2012. Individual tree biomass equations or biomass expansion factors for assessment of carbon stock changes in living biomass - A comparative study. For. Ecol. Manag., 270, pp.78−84. doi: 10.1016/j.foreco.2012.01.004.

Power, H. et al., 2019. Basal area and diameter growth in high-graded eastern temperate mixed wood forests: the influence of acceptable growing stock, species, competition and climate. Forestry 92(5), pp.659-669. doi: 10.1093/forestry/cpz029.

Priatna, D. et al., 2012. Habitat Selection and Activity Pattern of GPS Collared Sumateran Tigers. Jurnal Manajemen Hutan Tropika, 18(3), pp.155-163. doi: 10.7226/jtfm.18.3.155.

PROSEA, 1994. Plant resources of South-East Asia 5(1): Timber trees: Major Commercial Timbers. Prosea Foundation, Bogor, Indonsia.

PROSEA, 1994. Plant resources of South-East Asia 5(3): Timber trees: Lesser-known Timbers. Prosea Foundation, Bogor, Indonsia.

PROSEA, 1995. Plant resources of South-East Asia 5(2): Timber trees: Minor Commercial Timbers. Prosea Foundation, Bogor, Indonsia.

Purwaningsih & Kintamani, E. 2018. The Diversity of Shorea spp. (Meranti) at Some Habitats in Indonesia. IOP Conf. Ser.: Earth Environ. Sci., 197, 01203. doi: 10.1088/1755-1315/197/1/012034.

Qie, L. et al., 2017. Long-term carbon sink in Borneo's forests halted by drought andvulnerable to edge effects. Nat Commun, 8(1), 1966. doi: 10.1038/s41467-017-01997-0.

Ramananantoandro, T. et al., 2016. Influence of tree species, tree diameter and soil types on wood density and its radial variation in a mid-altitude rainforest in Madagascar. Ann. For. Sci., 73, pp.1113−1124. doi: 10.1007/s13595-016-0576-z.

Rozendaal, D.M. et al., 2022. Aboveground forest biomass varies across continents, ecological zones and successional stages: refined IPCC default values for tropical and subtropical forests. Environ. Res. Lett., 17(1), 014047. doi: 10.1088/1748-9326/ac45b3.

Rutishauser, E. et al., 2015. Rapid tree carbon stock recovery in managed Amazonian forests. Curr. Biol., 25(18), : pp.787-788. doi: 10.1016/j.cub.2015.07.034.

Saimun, M.S.R et al., 2021. Multiple drivers of tree and soil carbon stock in the tropical forest ecosystems of Bangladesh. Trees, Forests and People, 5, 100108. doi: 10.1016/j.tfp.2021.100108.

Shen, C. et al., 2021. Decline in Aboveground Biomass due to Fragmentation in Subtropical Forests of China. Forests, 12, 617. doi: org/10.3390/f12050617.

Shirima, D.D. et al., 2015. Does the abundance of dominant trees affect diversity of a widespread tropical woodland ecosystem in Tanzania? J. Trop. Ecol., 31(4), pp.345−359. doi: 10.1017/S0266467415000231.

Shumba, T. et al., 2020. Effectiveness of private land conservation areas in maintaining natural land cover and biodiversity intactness. Glob. Ecol. Conserv., 22, e00935. doi: 10.1016/j.gecco.2020.e00935.

Slik, J.F. et al., 2013. Large trees drive forest aboveground biomass variation in moist lowland forests across the tropics. Glob. Ecol. Biogeogr., 22(12), pp.1261−1271.

Slik, J.W.F., 2005. Assessing tropical lowland forest disturbance using plant morphological and ecological attributes. For. Ecol. Manag., 205, 241-250. doi: 10.1016/j.foreco.2004.10.011.

Stephenson, N.L. et al., 2014. Rate of tree carbon accumulation increases continuously with tree size. Nature 507, pp.90-93. doi: 10.1038/nature12914.

Suratman, M. N., 2012. Tree species diversity and forest stand structure of Pahang National Park, Malaysia. In Biodiversity Enrichment in a Diverse World. InTech., 18, pp.473–492. doi: 10.5772/50339.

Takeshige, R. et al., 2023. Influences of fern and vine coverage on the aboveground biomass recovery in a Bornean logged-over degraded secondary forest. J. For. Res., 28(4), pp.1−11. doi: 10.1080/13416979.2023.2187682.

Temesgen, H. et al., 2015. A review of the challenges and opportunities in estimating above ground forest biomass using tree-level models. Scand. J. For. Res., doi: 10.1080/02827581.2015.1012114.

Tonouéwa, J.F.M.F. et al., 2022. Influence of growth parameters on wood density of Acacia auriculiformis. Maderas, Cienci. Tecnol., 24(19), pp.1−14. doi: 10.4067/S0718-221X2022000100419.

Torres, B. & Lovett, J.C., 2013. 2012. Using basal area to estimate aboveground carbon stocks in forests: La Primavera Biosphere's Reserve, Mexico Arturo. Forestry 86, pp.267–281. doi: 10.1093/forestry/cps084.

Van Do, T. et al., 2020. Ecoregional variations of aboveground biomass and stand structure in evergreen broadleaved forests. J. For. Res., 31(5), pp.1713−1722. doi: 10.1007/s11676-019-00969-y.

Vieilledent, G. et al., 2018. New formula and conversion factor to compute basic wood density of tree species using a global wood technology database. Am. J. Bot., 105(10), pp.1653−1661. doi: 10.1002/ajb2.1175.

Wade, T. G. et al., 2003. Distribution and causes of global forest fragmentation. Conserv. Ecol., 7(2), 7-22. doi: 10.5751/es-00530-070207.

Wang, T., Dong, L. & Liu, Z., 2024. Stand structure is more important for forest productivity stability than tree, understory plant and soil biota species diversity. Front. For. Glob. Change, 7, 1354508. doi: 10.3389/ffgc.2024.1354508.

Wassihun, A.N. et al., 2019. Effect of forest stand density on the estimation of above ground biomass/carbon stock using airborne and terrestrial LIDAR derived tree parameters in tropical rain forest, Malaysia. Environ. Syst. Res., 8(1), pp.1−15. doi: 10.1186/s40068-019-0155-z.

Watson, J.E. et al., 2018. The exceptional value of intact forest ecosystems. Nat. Ecol. Evol., 2(4), pp.599−610. doi: 10.1038/s41559-018-0490-x.

Wulder, M.A. et al., 2020. Biomass status and dynamics over Canada's forests: Disentangling disturbed area from associated aboveground biomass consequences. Environ. Res. Lett., 15, 094093. doi: 10.1088/1748-9326/ab8b11.

Yeboah, D. et al., 2014. Variation in wood density and carbon content of tropical plantation tree species from Ghana. New Forests, 45(1), 352. doi: 10.1007/s11056-013-9390-8.

Published
2025-02-03
How to Cite
Nazeri, A., Jusoh, I. and Bolhassan, M. H. (2025) “Stand Structure Characteristics of Fragmented and Primary Forests and Their Correlation to Carbon Stocks ”, Journal of Tropical Biodiversity and Biotechnology, 10(1), p. jtbb13362. doi: 10.22146/jtbb.13362.
Section
Research Articles