Genotyping and Phytochemical Analysis of Kayu Pule Plant as Local Bali Medicinal Plant

  • I Ketut Suada Faculty of Agriculture, Udayana University, Jalan P.B. Sudirman, Denpasar, Bali 80239 https://orcid.org/0000-0003-2362-4345
  • I Gede Putu Wirawan Faculty of Agriculture, Udayana University, Jalan P.B. Sudirman, Denpasar, Bali 80239 https://orcid.org/0000-0002-5371-8185
  • I Nyoman Wijaya Faculty of Agriculture, Udayana University, Jalan P.B. Sudirman, Denpasar, Bali 80239
  • Anak Agung Sagung Intan Gayatri Faculty of Agriculture, Udayana University, Jalan P.B. Sudirman, Denpasar, Bali 80239
  • Gusti Ayu Putu Tiara Adi Hantari Faculty of Agriculture, Udayana University, Jalan P.B. Sudirman, Denpasar, Bali 80239
  • Maria Malida Vernandes Sasadara Faculty of Pharmacy, Universitas Mahasaraswati Denpasar, Jl. Kamboja No.11A, Dangin Puri Kangin, Denpasar Utara, Kota Denpasar, Bali 80233 https://orcid.org/0000-0002-5148-2981
  • Putu Krisnawan Kalimutu Faculty of Agriculture, Udayana University, Jalan P.B. Sudirman, Denpasar, Bali 80239
  • I Made Oka Parwata Bali Provincial Office of Agriculture and Food Security Jalan Raya W.R. Supratman no. 71 Denpasar, Bali 80114
Keywords: Alstonia scolaris, Genotyping, Kayu Pule, matK, Phytochemical compounds

Abstract

The bark of Kayu Pule plants in Bali is empirically known as a traditional medicinal ingredient and has been developed as a cosmetic and other health ingredient; however, scientific research has yet to be conducted on the profiles of the plant. This study aimed to determine the plant species, examine the scientific function of the compounds, and the antioxidant activity of the plant's ethanolic extract. This study performed a DNA analysis of the plant using matK primer, and the amplified DNA sequences were used to determine the phylogenetic tree. Based on the molecular analysis, the Kayu Pule plant bark from Bali, which was used as medicine, was Alstonia scholaris. The main compounds in Kayu Pule bark, such as ergost-5-en-3-ol and 12-oleanen-3-yl acetate, had anti-inflammatory, antioxidant, and antimicrobial properties. The antioxidant strength of the Kayu Pule plant was measured with IC50 of 3.7 μg mL-1 with a very strong category. This research showed the potential of Kayu Pule for developing medicinal and cosmetic products.

References

Ademiluyi, A.O. et al., 2018. Drying alters the phenolic constituents, antioxidant properties, α-amylase, and α-glucosidase inhibitory properties of Moringa (Moringa oleifera) leaf. Food Science and Nutrition, 6(8), pp.2123–2133. doi: 10.1002/fsn3.770.

Andila, P.S. et al., 2023. Medicinal Plants Diversity Used by Balinese in Buleleng Regency, Bali. Journal of Tropical Biodiversity and Biotechnology, 8(1), jtbb73303. doi: 10.22146/jtbb.73303.

Ariati, P.E.P. et al., 2022. Application of DNA Barcoding for authentication of Balinese traditional medicinal plant Purnajiwa (Kopsia arborea Blume. and Euchresta horsfieldii) (Lesch.) Benn. Bali Medical Journal, 11(3), pp.1681–1685. doi: 10.15562/bmj.v11i3.3815.

Azwanida, N., 2015. A Review on the Extraction Methods Use in Medicinal Plants, Principle, Strength and Limitation. Medicinal & Aromatic Plants, 04(03), pp.3–8. doi: 10.4172/2167-0412.1000196.

Banik, B. & Das, M.K., 2023. Therapeutic potential of Alstonia scholaris latex in the management of inflammatory diseases: an in vitro approach. Pharmacognosy Research, 15(3), pp.478-483. doi: 10.5530/pres.15.3.049

Bhardwaj, M. et al., 2020. Neophytadiene from Turbinaria ornata Suppresses LPS-Induced Inflammatory Response in RAW 264.7 Macrophages and Sprague Dawley Rats. Inflammation, 43(3), pp.937–950. doi: 10.1007/s10753-020-01179-z.

Candrasari, D. et al., 2018. Phytochemical Tests On Part Learning Leather Tree (Alstonia Scholaris). Jurnal Sylva Scienteae, 01(2), pp.233-242.

Carta, G. et al., 2017. Palmitic acid: Physiological role, metabolism and nutritional implications. Frontiers in Physiology, 8, 902. doi: 10.3389/fphys.2017.00902.

Chansiw, N., Chotinantakul, K. & Srichairatanakool, S., 2018. Antiinflammatory and Antioxidant Activities of the Extracts from Leaves and Stems of Polygonum odoratum Lour. Antiinflammatory & Anti-Allergy Agents in Medicinal Chemistry, 18(1), pp.45–54. doi: 10.2174/1871523017666181109144548.

Chehregani, A. et al., 2010. Chemical composition and antibacterial activity of essential oils of Tripleurospermum disciforme in three developmental stages. Pharmaceutical Biology, 48(11), pp.1280–1284. doi: 10.3109/13880201003770143.

Diniyah, N. et al., 2020. Komposisi Senyawa Fenol Dan Potensi Antioksidan Dari Kacang-Kacangan: Review. Jurnal Agroteknologi, 14(01), pp.91-102. doi: 10.19184/j-agt.v14i01.17965.

Dionisio, K.L. et al., 2018. Data Descriptor: The Chemical and Products Database, a resource for exposure-relevant data on chemicals in consumer products. Scientific Data, 5, pp.1–9. doi: 10.1038/sdata.2018.125.

El-Ashmawy, I.M., Aljohani, A.S.M. & Soliman, A.S., 2024. Studying the Bioactive Components and Phytochemicals of the Methanol Extract of Rhanterium epapposum Oliv. Applied Biochemistry and Biotechnology, 195(5), pp.2414–2424. doi: 10.1007/s12010-023-04574-y.

Farooq, S. & Ngaini, Z., 2018. Methyl-2-formyl benzoate: A Review of Synthesis and Applications. Current Organocatalysis, 5(3), pp.205–209. doi: 10.2174/2213337205666181023151829.

Fiege, H. et al., 2000. Phenol Derivatives. In Ullmann’s Encyclopedia of Industrial Chemistry. doi: 10.1002/14356007.a19_313.

Francke, W. & Schulz, S., 2010. Pheromones of terrestrial invertebrates. Comprehensive Natural Products II: Chemistry and Biology, 4, pp.153–223. doi: 10.1016/b978-008045382-8.00095-2.

Franko, J. et al., 2017. Evaluation of Furfuryl Alcohol Sensitization Potential Following Dermal and Pulmonary Exposure: Enhancement of Airway Responsiveness. Physiology & behavior, 176(12), pp.139–148. doi: 10.1093/toxsci/kfr271.Evaluation.

Gonzalez-Rivera, M.L. et al., 2023. In Vivo Neuropharmacological Effects of Neophytadiene. Molecules, 28(8), 3457. doi: 10.3390/molecules28083457.

Guo, F. et al., 2021. Antimicrobial Activity and Proposed Action Mechanism of Linalool Against Pseudomonas fluorescens. Frontiers in Microbiology, 12, 562094. doi: 10.3389/fmicb.2021.562094.

Herman, A. & Herman, A.P., 2012. Caffeine’s mechanisms of action and its cosmetic use. Skin Pharmacology and Physiology, 26(1), pp.8–14. doi: 10.1159/000343174.

Islamc, M.S., 2020. Phytochemical and Antioxidant Activities of Different Fractional Extracts of Alstonia Scholaris Linn. Open Access Journal of Complementary & Alternative Medicine, 2(3), pp.171-180. doi: 10.32474/oajcam.2020.02.000140.

Jayashree et al., 2020. Cytotoxic Effect of Aqueous and Ethanolic Bark Extracts of Alstonia Scholaris Against Cervical Cancer Cell Line. International Journal of Research in Pharmaceutical Sciences, 11(3), pp.4784-4789. doi: 10.26452/ijrps.v11i3.2772.

Ji, L. et al., 2002. Identification of Pyridine Compounds in Cigarette Smoke Solution That Inhibit Growth of the Chick Chorioallantoic Membrane. Toxicological Sciences, 69(1), pp.217–225. doi: 10.1093/toxsci/69.1.217.

Kanase, V. & Mane, D., 2018. A Pharmacognostic and Pharmacological Review on Alstonia Scholaris. Asian Journal of Pharmaceutical and Clinical Research, 11(12), pp.22-26. doi: 10.22159/ajpcr.2018.v11i12.28124.

Kapusterynska, A. et al., 2023. Mechanochemical Studies on Coupling of Hydrazines and Hydrazine Amides with Phenolic and Furanyl Aldehydes—Hydrazones with Antileishmanial and Antibacterial Activities. Molecules, 28(13), 5284. doi: 10.3390/molecules28135284.

Khanum, S., 2014. Pharmacological Investigation of the Chloroform Extracts of Alstonia Scholaris (L.) R.BR. Journal of Pharmaceutical and Scientific Innovation, 3(1), pp.14-19. doi: 10.7897/2277-4572.03198.

Kim, D.H. et al., 2013. Molecular Study of Dietary Heptadecane for the Antiinflammatory Modulation of NF-kB in the Aged Kidney. PLoS ONE, 8(3), e59316. doi: 10.1371/journal.pone.0059316.

Kim, D.H. et al., 2019. 2-Methoxy-4-vinylphenol attenuates migration of human pancreatic cancer cells via blockade of FAK and AKT signaling. Anticancer Research, 39(12), pp.6685–6691. doi: 10.21873/anticanres.13883.

Kusumawati, A. et al., 2021. Antioxidant Activity and Sun Protection Factor of Black Glutinous Rice (Oryza sativa var. glutinosa). Tropical Journal of Natural Product Research, 5(11), pp.1958-1961 doi: 10.26538/tjnpr/v5i11.11.

Kusumawati, W., 2002. 1504-4142-1-PB. In Penghambat Siklooksigenase-2 : Obat Analgesik Anti-inflamasi Nonsteroid (Ains) Masa Depan. Yogyakarta: Mutiara Medika, pp.30–33.

Lammers, A. et al., 2021. Antimicrobial Compounds in the Volatilome of Social Spider Communities. Frontiers in Microbiology, 12, 700693. doi: 10.3389/fmicb.2021.700693.

Liao, C.H. et al., 2020. Vancomycin-loaded oxidized hyaluronic acid and adipic acid dihydrazide hydrogel: Bio-compatibility, drug release, antimicrobial activity, and biofilm model. Journal of Microbiology, Immunology and Infection, 53(4), pp.525–531. doi: 10.1016/j.jmii.2019.08.008.

Liu, J. et al., 2020. Characterization of phenolic acid antimicrobial and antioxidant structure–property relationships. Pharmaceutics, 12(5), 419. doi: 10.3390/pharmaceutics12050419.

Molino, A. et al., 2018. Extraction of astaxanthin from microalga Haematococcus pluvialis in red phase by using generally recognized as safe solvents and accelerated extraction. Journal of Biotechnology, 283, pp.51–61. doi: 10.1016/j.jbiotec.2018.07.010.

Molyneux, P., 2004. The use of the stable free radical diphenylpicryl-hydrazyl (DPPH) for estimating anti-oxidant activity. Songklanakarin Journal of Science and Technology, 26, pp.211–219.

Mou, Y. et al., 2013. Antimicrobial and antioxidant activities and effect of 1-hexadecene addition on palmarumycin C2 and C3 yields in liquid culture of endophytic fungus berkleasmium sp. Dzf12. Molecules, 18(12), pp.15587–15599. doi: 10.3390/molecules181215587.

Muhammad, I. et al., 2000. Bioactive 12-oleanene triterpene and secotriterpene acids from Maytenus undata. Journal of Natural Products, 63(5), pp.605–610. doi: 10.1021/np990456y.

Okoye, N.N. et al., 2014. Beta-Amyrin and alpha-Amyrin acetate isolated from the stem bark of Alstonia boonei display profound antiinflammatory activity. Pharmaceutical Biology, 52(11), pp.1478–1486. doi: 10.3109/13880209.2014.898078.

Orlo, E. et al., 2021. Natural methoxyphenol compounds: Antimicrobial activity against foodborne pathogens and food spoilage bacteria, and role in antioxidant processes. Foods, 10(8), 1807. doi: 10.3390/foods10081807.

Pachaiyappan, S.K. et al., 2021. Bio-efficacy of Soil Actinomycetes and an Isolated Molecule 1,2-Benzenedicarboxylic Acid from Nonomuraea sp. Against Culex quinquefasciatus Say and Aedes aegypti L. Mosquitoes (Diptera: Culicidae). Applied Biochemistry and Biotechnology, 194 (10), pp.4765-4782. doi: 10.1007/s12010-021-03766-8.

Panche, A.N., Diwan, A.D. & Chandra, S.R., 2016. Flavonoids: An overview. Journal of Nutritional Science, 5, e47. doi: 10.1017/jns.2016.41.

Parveen, I. et al., 2011. DNA Barcoding of Endangered Indian Paphiopedilum Species. Molecular Ecology Resources., 12, pp.82-90. doi: 10.1111/j.1755-0998.2011.03071.x.

Patadiya, N., 2020. Steroids : Classification, Nomenculture, and Stereochemistry. International Journal of Universal Pharmacy and Bio Sciences, 9(5), pp.2319–8141.

Pérez-González, A., Alvarez-Idaboy, J.R. & Galano, A., 2017. Dual antioxidant/pro-oxidant behavior of the tryptophan metabolite 3-hydroxyanthranilic acid: A theoretical investigation of reaction mechanisms and kinetics. New Journal of Chemistry, 41(10), pp.3829–3845. doi: 10.1039/c6nj03980d.

Pérez-González, M.Z. et al., 2017. Antiprotozoal, antimycobacterial, and antiinflammatory evaluation of Cnidoscolus chayamansa (Mc Vaugh) extract and the isolated compounds. Biomedicine and Pharmacotherapy, 89, pp.89–97. doi: 10.1016/j.biopha.2017.02.021.

Pham, M.P. et al., 2021. Phylogenetics of Native Conifer Species in Vietnam Based on Two Chloroplast Gene Regions rbcL and matK. Czech Journal of Genetics and Plant Breeding. 57(2), pp.58–66 doi: 10.17221/88/2020-cjgpb.

Popović-Djordjević, J.B. et al., 2016. Antiproliferative and antibacterial activity of some glutarimide derivatives. Journal of Enzyme Inhibition and Medicinal Chemistry, 31(6), pp.915–923. doi: 10.3109/14756366.2015.1070844.

Pratiwi, P.D., 2023. Comparison of Antioxidant Activity of Crude Extract and Gel Preparation From Alstonia Scholaris L. Leaf Extract. Sanitas Jurnal Teknologi Dan Seni Kesehatan, 14(2), pp.95-105. doi: 10.36525/sanitas.2023.481.

PubChem, 2023a, '3-Methyl-1,2-cyclopentanedione', in National Library of Medicine, viewed 1 April 2024, from https://pubchem.ncbi.nlm.nih.gov/compound/61209

PubChem, 2023b, '5,8-Dimethoxy-2,2-dimethyl-2H-chromene', in National Library of Medicine, viewed 1 April 2024, from https://pubchem.ncbi.nlm.nih.gov/compound/5_8-Dimethoxy-2_2-dimethyl-2h-chromene

PubChem, 2024a., 'National Center for Biotechnology Information', in PubChem Compound Summary for CID 1623625, Amylcinnamaldehyde, viewed 1 August 2024, from https://pubchem.ncbi.nlm.nih.gov/compound/Amylcinnamaldehyde

PubChem, 2024b., 'National Center for Biotechnology Information', in PubChem Compound Summary for CID 22629, Hexyl salicylate, viewed 1 August 2024, from https://pubchem.ncbi.nlm.nih.gov/compound/Hexyl-salicylate

PubChem, 2024c., 'National Center for Biotechnology Information', in PubChem Compound Summary for CID 8222, Eicosane, viewed 1 August 2024, from https://pubchem.ncbi.nlm.nih.gov/compound/Eicosane

Qadir, T. et al., 2022. A Review on Medicinally Important Heterocyclic Compounds. The Open Medicinal Chemistry Journal, 16(1), e187410452202280. doi: 10.2174/18741045-v16-e2202280.

Rahayu, L., Febriana, E. & Istiyanti, E., 2020. Efficiency of organic rice farming inputs in the dry season at Purworejo Regency, Central Java, Indonesia. IOP Conference Series: Earth and Environmental Science, 423, 012047. doi: 10.1088/1755-1315/423/1/012047

Raju, M. et al., 2022. In vivo and In silico Anti-Inflammatory Studies of Alstonia scholaris Bark Extract. Asian Journal of Biology, 15(3), pp.42-54. doi: 10.9734/ajob/2022/v15i330242

Rathinavel, S. et al., 2023. Development of electrospun Plectranthus amboinicus loaded PCL polymeric nanofibrous scaffold for skin wound healing application: in-vitro and in-silico analysis. Journal of Polymer Research, 30(3), 110. doi: 10.1007/s10965-023-03474-3.

Rubab, M. et al., 2020. Bioactive potential of 2-methoxy-4-vinylphenol and benzofuran from Brassica oleracea L. var. capitate f, rubra (Red Cabbage) on oxidative and microbiological stability of beef meat. Foods, 9(5), 568. doi: 10.3390/foods9050568.

Saddhe, A.A., Jamdade, R. & Kumar, K., 2016. Assessment of Mangroves From Goa, West Coast India Using DNA Barcode. SpringerPlus, 5, 1554. doi: 10.1186/s40064-016-3191-4.

Sarada, R. et al., 2006. An efficient method for extraction of astaxanthin from green alga Haematococcus pluvialis. Journal of Agricultural and Food Chemistry, 54(20), pp.7585–7588. doi: 10.1021/jf060737t.

Scherer, M. et al., 2017. Human metabolism and excretion kinetics of the fragrance lysmeral after a single oral dosage. International Journal of Hygiene and Environmental Health, 220(2), pp.123–129. doi: 10.1016/j.ijheh.2016.09.005.

Shang, J.K. et al., 2010. Pharmacological Evaluation of Alstonia Scholaris: Antiinflammatory and Analgesic Effects. Journal of Ethnopharmacology, 129(2), pp.174–181. doi: 10.1016/j.jep.2010.02.011.

Song, B.J. et al., 2015. Translational Implications of the Alcohol-Metabolizing Enzymes, Including Cytochrome P450-2E1, in Alcoholic and Nonalcoholic Liver Disease 1st ed., Elsevier Inc. doi: 10.1016/bs.apha.2015.04.002.

Subraya, C.K., Harikiran & Gupta, D., 2012. Antioxidant Antiinflammatory Activity of Alstonia Scholaris R.Br. Stem Bark Extract. Free Radicals and Antioxidants, 2(2), pp.55–57. doi: 10.5530/ax.2012.2.2.9.

Tang, S.M. et al., 2020. Pharmacological basis and new insights of quercetin action in respect to its anti-cancer effects. Biomedicine and Pharmacotherapy, 121, 109604. doi: 10.1016/j.biopha.2019.109604.

Tenri, A. & Rivai, O., 2020. Identifikasi Senyawa yang Terkandung pada Ekstrak Daun Kelor (Moringa oleifera). Indonesian Journal of Fundamental Sciences, 6(2), pp.63-70

Teresa, R.C.M. et al., 2014. The avocado defense compound phenol-2,4-bis (1,1-dimethylethyl) is induced by arachidonic acid and acts via the inhibition of hydrogen peroxide production by pathogens. Physiological and Molecular Plant Pathology, 87(May), pp.32–41. doi: 10.1016/j.pmpp.2014.05.003.

Thanh Pham, N.T. et al., 2021. DNA Barcode of matK Combined With ITS Effectively Distinguishes the Medicinal Plant Stephania Brachyandra Diels Collected in Laocai, Vietnam. Journal of Applied Biology & Biotechnology, 9(6), pp.63-70. doi: 10.7324/jabb.2021.9608.

Tungmunnithum, D. et al., 2018. Flavonoids and Other Phenolic Compounds from Medicinal Plants for Pharmaceutical and Medical Aspects: An Overview. Medicines, 5(3), 93. doi: 10.3390/medicines5030093.

Velika, B. & Kron, I., 2012. Antioxidant properties of benzoic acid derivatives against Superoxide radical. Free Radicals and Antioxidants, 2(4), pp.62–67. doi: 10.5530/ax.2012.4.11.

Venn-Watson, S. & Schork, N.J., 2023. Pentadecanoic Acid (C15:0), an Essential Fatty Acid, Shares Clinically Relevant Cell-Based Activities with Leading Longevity-Enhancing Compounds. Nutrients, 15(21), 4607. doi: 10.3390/nu15214607.

Vergara-Jimenez, M., Almatrafi, M.M. & Fernandez, M.L., 2017. Bioactive components in Moringa oleifera leaves protect against chronic disease. Antioxidants, 6(4), 91. doi: 10.3390/antiox6040091.

Verma, P.K. et al., 2015. Polyphenolic constituents and antioxidant/antiradical activity in different extracts of Alstonia scholaris (Linn.). African Journal of Biotechnology, 14(47), pp.3190-3197. doi: 10.5897/AJB2015.14708

Verpoorte, R. & Alfermann, A.W., 2000. Metabolic Engineering of Plant Secondary Metabolism, Dordrecht: Springer Dordrecht.

Wang, H. et al., 2023. Steaming-induced conversion of the volatile components for P. ginseng, P. quinquefolius, and P. notoginseng by headspace sampling gas chromatographymassspectrometry (HS-GC-MS) and untargeted metabolomics analysis, Journal of Chinese Pharmaceutical Sciences. 32(8), pp.645-664. doi: 10.5246/jcps.2023.08.054

Wang, W.L. et al., 2022. Stigmasterol inhibits cancer stem cell activity in endometrial cancer by repressing IGF1R/mTOR/AKT pathway. Journal of Functional Foods, 99, 105338. doi: 10.1016/j.jff.2022.105338.

Wirawan, I.G.P. et al., 2020. Dna barcoding in molecular identification and phylogenetic relationship of beneficial wild balinese red algae, bulung sangu (Gracilaria sp.). Bali Medical Journal, 10(1), pp.82–88. doi: 10.15562/bmj.v10i1.2093.

Wirawan, I.G.P. et al., 2022. Phytochemical Analysis and Molecular Identification of Green Macroalgae Caulerpa spp. from Bali, Indonesia. Molecules, 27(15), 4879. doi: 10.3390/molecules27154879.

Xiao, Q., Huang, Q. & Ho, C.T., 2021. Occurrence, Formation, Stability, and Interaction of 4-Hydroxy-2,5-dimethyl-3(2H)-furanone. ACS Food Science and Technology, 1(3), pp.292–303. doi: 10.1021/acsfoodscitech.1c00011.

Yu, X. et al., 2013. Identification of 2,3-dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4-one as a strong antioxidant in glucose-histidine Maillard reaction products. Food Research International, 51(1), pp.397–403. doi: 10.1016/j.foodres.2012.12.044.

Zehra, S. & Sanaye, M., 2021. Evaluation of Anti-Urolithiatic Potential of Leaves of Alstonia Scholaris and Its Isolated Pentacyclic Triterpenoids in Ethylene Glycol-Induced Renal Calculi Rat Model. Indian Journal of Pharmaceutical Education and Research, 55(1), pp.232–239. doi: 10.5530/ijper.55.1.26.

Published
2025-03-12
How to Cite
I Ketut Suada, I Gede Putu Wirawan, I Nyoman Wijaya, Anak Agung Sagung Intan Gayatri, Gusti Ayu Putu Tiara Adi Hantari, Maria Malida Vernandes Sasadara, Putu Krisnawan Kalimutu and I Made Oka Parwata (2025) “Genotyping and Phytochemical Analysis of Kayu Pule Plant as Local Bali Medicinal Plant ”, Journal of Tropical Biodiversity and Biotechnology, 10(1), p. jtbb13086. doi: 10.22146/jtbb.13086.
Section
Research Articles