Exploring the Diversity of Arbuscular Mycorrhizal Fungi in Zingiberaceae Family Plants at the Tukung Gede Mountain Natural Reserve

  • Rida Khastini Department of Biology Education, Faculty of Teacher Training and Education, Universitas Sultan Ageng Tirtayasa, Jl. Raya Ciwaru, Cipare, Serang, Banten, Indonesia, 42117; Center Excellence for Local Food Innovation, Universitas Sultan Ageng Tirtayasa, Serang, Banten Indonesia 42163 https://orcid.org/0000-0002-1007-0059
  • Iing Dwi Lestari Department of Biology Education, Faculty of Teacher Training and Education, Universitas Sultan Ageng Tirtayasa, Jl. Raya Ciwaru, Cipare, Serang, Banten, Indonesia, 42117 https://orcid.org/0000-0003-3687-2524
  • Indah Juwita Sari Department of Biology Education, Faculty of Teacher Training and Education, Universitas Sultan Ageng Tirtayasa, Jl. Raya Ciwaru, Cipare, Serang, Banten, Indonesia, 42117 https://orcid.org/0000-0002-5810-2945
  • Nida Septiani Department of Biology Education, Faculty of Teacher Training and Education, Universitas Sultan Ageng Tirtayasa, Jl. Raya Ciwaru, Cipare, Serang, Banten, Indonesia, 42117
Keywords: Arbuscular Mycorrhizal Fungi, Diversity, Zingiberaceae

Abstract

Arbuscular mycorrhizal fungi (AMF) are essential in improving soil quality and facilitating plant nutrient and water uptake through mutualistic associations. However, limited research exists on the diversity and distribution of AMF associated with plants in the Zingiberaceae family, especially in unique ecological habitats such as the Tukung Gede Mountain Natural Reserve. This study aims to assess and document the diversity of AMF linked to Zingiberaceae plants in this reserve. Sampling was performed at three locations with distinct plant compositions to explore the diversity of AMF genera. Soil samples were processed using a wet sieve technique, while root samples were chemically stained to evaluate AMF colonization. Key parameters studied included diversity indices, spore density, genus-level identification, and root colonization rates. The findings revealed the presence of eight AMF genera: Sclerocystis, Septoglomus, Acaulospora, Gigaspora, Glomus, Scutellospora, Racocetra, and Rhizophagus, identified based on spore morphology. Root staining revealed structural AMF infections, including vesicles, internal hyphae, and arbuscules. Zingiber officinale exhibited the highest AMF colonization rate (88%) among the Zingiberaceae plants studied, whereas Zingiber zerumbet had the lowest (56%). Etlingera Solaris and Zingiber officinale showed the highest spore densities at 172 and 254 spores per 100g of soil, respectively. AMF diversity indices varied across locations, with values of 0.78 (Station I), 0.95 (Station II), and 0.84 (Station III). This research emphasizes the extensive AMF diversity within Zingiberaceae plants and its potential importance for conservation and ecological sustainability.

References

Abdullahi, R., Kwari, J. & Zubairu, A., 2021. Arbuscular Mycorrhizal Fungi Association with Some Selected Medicinal Plants. Asian Journal of Soil Science and Plant Nutrition, 7(4), pp.57-62. doi: 10.9734/ajsspn/2021/v8i130122

Alayya, N.P. & Prasetya. B., 2022. Kepadatan Spora dan Persen Koloni Mikoriza Vesikula Arbuskula (MVA) Pada Beberapa Tanaman Pangan Di Lahan Pertanian Kecamatan Jabung Malang. Jurnal Tanah dan Sumberdaya Lahan, 9(2), pp.267-276. doi: jtsl.ub.ac.id/index.php/jtsl/article/view/777.

Alrejhei, K., Saleh, I. & Abu-Dieyeh, M.H., 2021. Biodiversity of arbuscular mycorrhizal fungi in plant roots and rhizosphere soil from different arid land environment of Qatar. Jurnal Plant Direct, 6(1), e369. doi: 10.1002/pld3.369

Azizah, Q.F. & Hariyono, K., 2022. The effect of arbuscular mycorrhizal fungi (AMF) induction to the growth and atsiri oils content of three types ginger (Zingiber officinale Rosc.). Berkala Ilmiah Pertanian, 5(3), pp.140–147. doi: 10.19184/bip.v5i3.15339.

Banten Provincial Environmental and Forestry Service (Dinas Lingkungan Hidup dan Kehutanan Provinsi Banten), 2018. Cagar Alam Tukung Gede. Available at: https://dlhk.bantenprov.go.id.

Barea, J. M. et al., 2011. Ecological and functional roles of mycorrhizas in semi-arid ecosystems of Southeast Spain. Journal of Arid Environments, 75(12), pp. 1292–1301. doi: 10.1016/j.jaridenv.2011.06.001

Becerra A. et al., 2014. Arbuscular mycorrhizal fungi in saline soils: Vertical distribution at different soil depth. Brazilian Journal of Microbiology, 45(2), pp.585-594. doi: 10.1590/s1517- 83822014000200029

Bernaola, L. et al., 2018. Natural Colonization of Rice by Arbuscular Mycorrhizal Fungi in Different Production Areas. Journal Science Direct, 25(3), pp.169-174. doi: 10.1016/j.rsci.2018.02.006

Bohacz, J. et al., 2022. Impact of the Cultivation System and Plant Cultivar on Arbuscular Mycorrhizal Fungi of Spelt (Triticum aestivum ssp. Spelta L.) in a Short-Term Monoculture. Journal Pathogens, 11(8), 844. doi: 10.3390/pathogens11080844.

Brundrett, M. et al., 1996. Working with Mycorrhizas in Forestry and Agriculture. ACIAR Monograph.

Cardoso, I.M. & Kuyper, T.W., 2006. Mycorrhizas and tropical soil fertility. Agriculture, Ecosystems & Environment, 116, pp.72–84. doi: 10.1016/j.agee.2006.03.011.

Chikoti, M. et al., 2022. Isolation and identification of arbuscular mycorrhizal fungi associated with rhizosphere of black siris (Albizzia odoratissima (L.F.) Benth). International Journal of Current Microbiology and Applied Sciences, 11(8), pp.194–200. doi: 10.20546/ijcmas.2022.1108.020.

Chiu, C. & Paszkowski, U., 2019. Mechanisms and impact of symbiotic phosphate acquisition. Cold Spring Harbor Perspectives in Biology, 11(6), a034603. doi: 10.1101/cshperspect.a034603.

Danesh, Y.R. et al., 2022. Characterization of arbuscular mycorrhizal fungal communities associated with vineyards in northwestern Iran. Turkish Journal of Agriculture and Forestry, 46(3), pp.271–279. doi: 10.55730/1300-011X.3001.

de la Hoz, P.J. et al., 2021. Mycorrhiza-induced resistance against foliar pathogens is uncoupled of nutritional effects under different light intensities. Journal of Fungi, 7(6), 402. doi: 10.3390/jof7060402.

FAO, 2020. Global forest resources assessment 2020: Main report. Rome. doi: 10.4060/ca9825en.

Gou, X. et al., 2023. Arbuscular mycorrhizal fungi alleviate erosional soil nitrogen loss by regulating nitrogen cycling genes and enzymes in experimental agro-ecosystems. Science of the Total Environment, 906, 167425. doi: 10.1016/j.scitotenv.2023.167425.

Graham, J.H. & Eissenstat, D.M., 1998. Field evidence for the carbon cost of citrus mycorrhizas. New Phytologist, 140(1), pp.103–110.

Guerrini, A. et al., 2023. A comparative study on chemical compositions and biological activities of four Amazonian Ecuador essential oils: Curcuma longa L. (Zingiberaceae), Cymbopogon citratus (DC.) Stapf, (Poaceae), Ocimum campechianum Mill. (Lamiaceae), and Zingiber officinale Roscoe (Zingiberaceae). Antibiotics, 12(1), 177. doi: 10.3390/antibiotics12010177.

Guisande-Collazo, A., González, L. & Souza-Alonso, P., 2022. Origin makes a difference: Alternative responses of an AM-dependent plant to mycorrhizal inoculum from invaded and native soils under abiotic stress. Plant Biology, 24(3), pp.417–427. doi: 10.1111/plb.13402.

Han, S. et al., 2023. Multidimensional analysis reveals environmental factors that affect community dynamics of arbuscular mycorrhizal fungi in poplar roots. Frontiers in Plant Science, 13, 1068527. doi: 10.3389/fpls.2022.1068527.

Husein, M. et al., 2022. The role of arbuscular mycorrhizal fungi density and diversity on the growth and biomass of corn and sorghum forage in trapping culture. Tropical Animal Science Journal, 45(1), pp.37–43. doi: 10.5398/tasj.2022.45.1.37.

International Culture Collection of Vesicular Arbuscular Mycorrhizal-INVAM, 2022. International culture collection of (vesicular) arbuscular mycorrhizal fungi. University of Kansas.

Kaur, S. & Suseela, V., 2020. Unraveling arbuscular mycorrhiza-induced changes in plant primary and secondary metabolome. Metabolites, 10(8), 335. doi: 10.3390/metabo10080335.

Kuila, D. & Ghosh, S., 2022. Aspects, problems, and utilization of arbuscular mycorrhizal (AM) application as bio-fertilizer in sustainable agriculture. Current Research in Microbial Sciences, 3, 100107. doi: 10.1016/j.crmicr.2022.100107.

Liang, H. & Chen, J., 2021. Comparison and phylogenetic analyses of nine complete chloroplast genomes of Zingibereae. Forests, 12(6), 710. doi: 10.3390/f12060710.

Liu, R. et al., 2021. Mycorrhizal fungal diversity and its relationship with soil properties in Camellia oleifera. Agriculture, 11(6), 470. doi: 10.3390/agriculture11060470.

Mahulette, A. et al., 2021. Isolation and identification of indigenous arbuscular mycorrhizal fungi (AMF) of forest clove rhizosphere from Maluku, Indonesia. Biodiversitas Journal of Biological Diversity, 22(8), pp.3613–3619. doi: 10.13057/biodiv/d220863.

Marinho, F. et al., 2019. High diversity of arbuscular mycorrhizal fungi in natural and anthropized sites of a Brazilian tropical dry forest (Caatinga). Fungal Ecology, 40, pp.82–91. doi: 10.1016/j.funeco.2018.11.014.

Marsh, L., Hashem, F. & Smith, B., 2021. Organic ginger (Zingiber officinale Rosc.) development in a short temperate growing season: Effect of seedling transplant type and mycorrhiza application. American Journal of Plant Sciences, 12(3), pp.315-328. doi: 10.4236/ajps.2021.123020.

Martínez, O.Z. et al., 2024. Arbuscular mycorrhizal fungal diversity in agricultural fields is explained by the historical proximity to natural habitats. Soil Biology and Biochemistry, 199, 109591. doi: 10.1016/j.soilbio.2024.109591.

Mathurin, D. et al., 2022. Diversity of arbuscular mycorrhizal fungi in the three agroecological zones of the Central African Republic. African Journal of Biotechnology, 21(1), pp.26–34. doi: 10.5897/ajb2021.17346.

Mukhongo, R.W. et al., 2023. Composition and spore abundance of arbuscular mycorrhizal fungi in sweet potato producing areas in Uganda. Frontiers in Soil Science, 3, pp.1–15. doi: 10.3389/fsoil.2023.1152524.

Noreen, S. et al., 2023. Morphological and molecular characterizations of arbuscular mycorrhizal fungi and their influence on soil physicochemical properties and plant nutrition. ACS Omega, 8(36), pp.32468–32482. doi: 10.1021/acsomega.3c02489.

Nugroho, W.A. & Prasetya, B., 2023. Eksplorasi mikoriza arbuskular pada beberapa sistem penggunaan lahan pertanian di Desa Ngawonggo, Kecamatan Tajinan, Kabupaten Malang. Jurnal Tanah dan Sumberdaya Lahan, 10(1), pp.25–35. doi: 10.21776/ub.jtsl.2023.010.1.3.

Pace, L. et al., 2019. Temporal variations in the diversity of airborne fungal spores in a Mediterranean high-altitude site. Atmospheric Environment, 210, pp.166–170. doi: 10.1016/j.atmosenv.2019.04.059.

Pacioni, G., 1992. Wet sieving and decanting techniques for the extraction of spores of VA mycorrhizal fungi. In Methods in Microbiology, 24, pp.317–322. San Diego: Academic Press Inc.

Pandey, R., Loushambam, S. & Srivastava, A.K., 2020. Arbuscular mycorrhizal and dark septate endophyte fungal associations in two dominant ginger species of Northeast India. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 90(1), pp.885–894. doi: 10.1007/s40011-019-01159-w.

Parwi, et al., 2018. Diversity of arbuscular mycorrhiza and maize yield in cajeput agroforestry system with different fertilizer management. Bulgarian Journal of Agricultural Science, 24(4), pp.611–616.

Peng, W. et al., 2022. Diversity of volatile compounds in ten varieties of Zingiberaceae. Molecules (Basel, Switzerland), 27(2), 565. doi: 10.3390/molecules27020565.

Pironon, S. et al., 2020. Toward unifying global hotspots of wild and domesticated biodiversity. Plants, 9(9), 1128. doi: 10.3390/plants9091128.

Qiao, X.et al., 2023. Mechanisms of mycorrhizal fungi in mitigating drought-induced oxidative stress in plants. Environmental and Experimental Botany, 205, 105260. doi: 10.1016/j.envexpbot.2023.105260.

Rajpurohit, S. & Jaiswal, P., 2022. Effect of physico-chemical properties on spore density and root colonization of mycorrhizal fungi in industrial wastelands in Kota, Rajasthan. International Journal of Plant & Soil Science, 34(21), pp.114–126. doi: 10.9734/ijpss/2022/v34i2131301.

Reynolds, H.L. et al., 2003. Grassroots ecology: plant–microbe–soil interactions as drivers of plant community structure and dynamics. Ecology, 84(9), pp.2281–2291.

Salim, M., Budi, S., Setyaningsih, L. & Kirmi, H., 2019. Diversity of arbuscular mycorrhizal fungi as affected by time consequences revegetation age in post-coal mine area at PT Berau Coal Tbk, East Kalimantan, Indonesia. IOP Conference Series: Earth and Environmental Science, 394, pp.1–9. doi: 10.1088/1755-1315/394/1/012067.

Samal, S.I., Mansur, I. & Junaedi, A., 2023. Exploration of indigenous arbuscular mycorrhizal fungi on Arenga pinnata Merr. in post-mining land. Indonesian Mining Journal, 26(1), pp.39–47. doi: 10.30556/imj.Vol26.No1.2023.1285.

Sangwan, S. & Prasanna, R., 2021. Mycorrhizae helper bacteria: Unlocking their potential as bioenhancers of plant–arbuscular mycorrhizal fungal associations. Microbial Ecology, 84(1), pp.1–10. doi: 10.1007/s00248-021-01831-7.

Santos, R. et al., 2010. Effects of arbuscular mycorrhizal fungi and phosphorus fertilization on post vitro growth of micropropagated Zingiber officinale Roscoe. Revista Brasileira de Ciência do Solo, 34(3), pp.765–771. doi: 10.1590/S0100-06832010000300018.

Sefrila, M. et al., 2021. Diversity and abundance of arbuscular mycorrhizal fungi (AMF) in rhizosphere Zea mays in tidal swamp. Biodiversitas, 22(11), pp.5071–5076. doi: 10.13057/biodiv/d221144.

Silva, E.D. et al., 2022. Occurrence of spores of arbuscular mycorrhizal fungi in agroforestry systems and at the Manaus refinery, Amazonas State. International Journal of Advanced Engineering Research and Science, 9(12), pp.360–366. doi: 10.22161/ijaers.912.39.

Smith, S.E. & Smith, F.A., 2011. Roles of arbuscular mycorrhizas in plant nutrition and growth: New paradigms from cellular to ecosystem scales. Annual Review of Plant Biology, 62(1), pp.227–250. doi: 10.1146/annurev-arplant-042110-103846.

Stürmer, S.L., 2012. A history of the taxonomy and systematics of arbuscular mycorrhizal fungi belonging to the phylum Glomeromycota. Mycorrhiza, 22(4), pp.247–258. doi: 10.1007/s00572-012-0432-4.

Suharno, S. et al, 2022. New record of arbuscular mycorrhizal fungi (AMF) association with Kebar grass (Biophytum petersianum Klotzsch.) in the grassland area of Kebar, Tambrauw Regency, West Papua, Indonesia. Journal of Tropical Biodiversity and Biotechnology, 7(2), jtbb70021. doi: 10.22146/jtbb.70021.

Treseder, K.K., 2004. A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies. New Phytologist, 164, pp.347–355. doi: 10.1111/j.1469-8137.2004.01159.x.

Yuwati, T., Putri, W. & Badruzsaufari, 2020. Comparison of arbuscular mycorrhizal spores abundance under Sengon (Falcataria moluccana (Miq.) Barneby & Grimes) planted on deep peat and mineral soils. Journal of Tropical Peatlands, 10(2), pp.1–8. doi: 10.52850/jtpupr.v10i2.2062.

Zhu, S. et al., 2024. Arbuscular mycorrhizal fungi alleviated the effects of Cd stress on Passiflora edulis growth by regulating the rhizosphere microenvironment and microbial community structure at the seedling stage. Scientia Horticulturae, 328, 112879. doi: 10.1016/j.scienta.2024.112879.

Published
2025-03-14
How to Cite
Rida Khastini, Iing Dwi Lestari, Indah Juwita Sari and Nida Septiani (2025) “Exploring the Diversity of Arbuscular Mycorrhizal Fungi in Zingiberaceae Family Plants at the Tukung Gede Mountain Natural Reserve ”, Journal of Tropical Biodiversity and Biotechnology, 10(1), p. jtbb12567. doi: 10.22146/jtbb.12567.
Section
Research Articles