Enhanced Antibacterial Potential of Fractionated Bioactive Compounds Isolated from Endophytic Nigrospora oryzae UILRZ1 in Ocimum gratissimum

Keywords: Ocimum grattisimum, Endophytic fungi, Nigrospora oryzae, Antibacterial resistance, Bioactive compounds

Abstract

The recurring global health challenges due to antimicrobial resistance require an impulsive response to search for alternative drugs with strong activities against multidrug-resistant pathogens. This study evaluated and screened endophytic fungi of strong antibacterial potential from Moringa oleifera and Ocimum gratissimum. Primer pairs of ribosomal DNA's internally transcribed spacer regions (ITS1 and ITS4) were used to determine their evolutionary relationships. A principal component analysis (PCA) biplot was used to identify the most effective endophyte at a 95% confidence level (P˂0.05).  Improved culture conditions for the production of bioactive metabolites was done using the Taguchi design of experiment. Considering PCA biplot analysis, Nigrospora oryzae UILRZ1 from Ocimum gratissimum was most effective against selected pathogens. Production of metabolites was optimum at pH 5, 0.3 % (w/v) protein, 6-day inoculation time, and 4-plug inoculum, while variable of highest contribution was percentage of protein used. The column and thin layer chromatography were used to fractionate the extracts after optimization of production conditions while GCMS analysis was adopted to identify the chemical compounds. The crude extract's minimum inhibitory concentration (MIC) for chosen test microorganisms was 256 μg/mL prior optimization; while fractions of partially purified optimized extract of Nigrospora oryzae UILRZ1 showed enhanced antibacterial activity against Staphylococcus aureus with a MIC of 64 μg/mL. Efficient synthesis of bioactive metabolites was significant in the enhanced antibacterial activity against S. aureus.

References

Aamir, M. et al., 2020. Fungal endophytes: Classification, diversity, ecological role and their relevance in sustainable agriculture. In Woodhead Publishing Series in Food Science, Technology and Nutrition, Microbial Endophytes. Woodhead Publishing, pp.291-323. doi: 10.1016/B978-0-12-818734-0.00012-7.

Abonyi, D.O. et al., 2018. Biologically active phenolic acids produced by Aspergillus sp. and endophyte of Moringa oleifera. European Journal of Biological Research, 8(3), pp.158- 168. doi: 10.5281/zenodo.1404981.

Alsharari, S.S., Galal, F.H. & Seufi, A.M., 2022. Composition and Diversity of the Culturable Endophytic Community of Six Stress-Tolerant Dessert Plants Grown in Stressful Soil in a Hot Dry Desert Region. Journal of Fungi, 8(3), 241. doi: 10.3390/jof8030241

Atiphasaworn, P. et al., 2017. Antibacterial and Antioxidant Constituents of Extracts of Endophytic Fungi Isolated from Ocimum basilicum var. thyrsiflora Leaves. Current Microbiology, 74, pp.1185–1193. doi: 10.1007/s00284-017-1303-1

Balouiri, M., Sadiki, M. & Ibnsouda, S.K., 2016. Methods for In vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical Analysis, 6(4), pp.71-79. doi: 10.1016%2Fj.jpha.2015.11.005.

Breijyeh, Z., Jubeh, B. & Karaman, R., 2020. Resistance of Gram-Negative Bacteria to Current Antibacterial Agents and Approaches to Resolve It. Molecules, 25(6), 1340, doi: 10.3390/molecules25061340.

Carcione, D. et al., 2021. In Vitro Antimicrobial Activity of Siderophore Cephalosporin Cefiderocol against Acinetobacter baumannii Strains Recovered from Clinical Samples. Antibiotics, 10, 1309. doi: 10.3390/ antibiotics10111309.

Chen, S.L. et al., 2016. Conservation and Sustainable use of Medicinal Plants: Problems, Progress, and Prospects. Chinese Medicine, 11, 37. doi: 10.1186/s13020-016-0108-7.

Chowdhury, T. et al., 2021. Metabolomics Using Gas chromatography-mass spectrometry and antibacterial activity of nine Ocimum taxa of Dakshin Dinajpur district, West Bengal, India. Journal of Applied and Natural Science, 13(1), pp.127-136. doi: 10.31018/jans.v13i1.2508.

CLSI, 2012. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that grow aerobically: Approved Standard –Ninth Edition. CLSI document M07-A9. Wayne, PA: Clinical and Laboratory Standards Institute. 3(2), pp. 27-29.

De padua, A.P.S.L. et al., 2019. Fungal endophyte diversity in leaves of medicinal plant Myracrodruon urundeuva in a Brazilian dry tropical forest and their capacity to produce L-asparaginase. Acta Botanica Brasilica, 33(1), pp.39-49. doi: 10.1590/0102-33062018abb0108.

Dewanjee, S. et al., 2014. Bioautography and its scope in field of Natural Chemistry. Journal of Pharmaceutical Analysis, 5(2), pp.75-84. doi: 10.1016/j.jpha.2014.06.002.

dos Reis, J.B.A., Lorenzi, A.S. & do Vale, H.M.M., 2022. Methods used for the study of endophytic fungi: a review on methodologies and challenges, and associated tips. Archives of Microbiology, 204(11), 675. doi: 10.1007/s00203-022-03283-0

Eid, A.M. et al., 2019. Role of Endophytes in Plant Health and Abiotic Stress Management. In Microbiome in Plant Health and Diseases. Springer Nature, pp.119-144. doi: 10.1007/978-981-13-8495-0_6.

El-Moslamy, S.H. et al., 2017. Applying Taguchi design and large-scale- strategy for myco-synthesis of nano-silver from endophytic Trichoderma harzianum SYA. F4 and its application against phytopathogens. Scientific reports, 7, 45297. doi: 10.1038/srep45297.

Fernández-Pastor, I. et al., 2021. Pipecolisporin, a Novel Cyclic Peptide with Antimalarial and Antitrypanosome Activities from a Wheat Endophytic Nigrospora oryzae. Pharmaceuticals, 14(3), 268. doi:10.3390/ph14030268.

Fontana, D.C. et al., 2021. Endophytic Fungi: Biological Control and Induced Resistance to Phytopathogens and Abiotic Stresses. Pathogens (Basel, Switzerland), 10(5), 570. doi: 10.3390/pathogens10050570

Geisinger, E, et al., 2020. Antibiotic susceptibility signatures identify potential antimicrobial targets in the Acinetobacter baumannii cell envelope. Nature communications, 11(1), 4522. doi: 10.1038/s41467-020-18301-2.

Hamid, A.A. et al., 2016. Chemical composition, antimicrobial and free radical scavenging activities of Grewia pubescens. Chemistry International, 2(4), pp.254-261.

Hosseinzadeh, S. et al., 2015. Application of Medicinal Plants in Traditional and Modern Medicine: A Review of Thymus vulgaris. International Journal of Clinical Medicine, 6(9), pp.635-642, doi: 10.4236/ijcm.2015.69084.

Iwu, C.D. & Patrick, S.M., 2021. An insight into implementation of global action plan on antimicrobial resistance in WHO African region: A roadmap for action. International Journal of Antimicrobial Agents, 58(4), 106411. doi: 10.1016/j.ijantimicag.2021.106411.

Jayatilake, P.L. & Munasinghe, H., 2020. Antimicrobial Activity of Cultivable Endophytic and Rhizosphere Fungi Associated with “Mile-a-Minute,” Mikania cordata (Asteraceae). BioMed Research International, 2020, 5292571. doi: 10.1155/2020/5292571

Ji, Y. et al., 2021. Chemical characterization, neuroprotective, antimicrobial, and enzyme inhibitory activities of Hypericum volatile oils. Industrial Crops and Products, 172, 113991. doi: 10.1016/j.indcrop.2021.113991.

Khare, E., Mishra, J. & Arora, N.K., 2018. Multifaceted Interactions between Endophytes and Plant: Developments and Prospects. Frontiers in Microbiology, 9, 2732. doi: 10.3389/fmicb.2018.02732.

Kumar, S. et al., 2018. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Molecular Biology and Evolution, 35(6), pp.1547–1549. doi: 10.1093/molbev/msy096.

Kumara, P.M. et al., 2014. Endophytes and Plant Secondary Metabolite Synthesis: Molecular and Evolutionary Perspective. In Advances in Endophytic Research. New Delhi: Springer. doi: 10.1007/978-81-322-1575-2_9.

Kumari, P. et al., 2023. Plants and endophytes interaction: a “secret wedlock” for sustainable biosynthesis of pharmaceutically important secondary metabolites. Microbial Cell Factories, 22(1), 226. doi: 10.1186/s12934-023-02234-8

Kusari, S. & Spiteller, M., 2012. Metabolomics of Endophytic fungi producing associated plant secondary metabolites: Progress, Challenges, and Opportunities. In Metabolomics. InTech. doi: 10.5772/31596.

Martínez-Beamonte, R. et al., 2020. Could squalene be an added value to use olive by-products? Journal of Science of Food and Agriculture, 100(3), pp.915-925. doi: 10.1002/jsfa.10116

Méndez-Hernández, J.E. et al., 2023. Strategies for Supplying Precursors to Enhance the Production of Secondary Metabolites in Solid-State Fermentation. Fermentation, 9(9), pp.804–804. doi:10.3390/fermentation9090804

Merlin, J.N. et al., 2013. Optimization of Growth and Bioactive Metabolite Production: Fusarium solani. Asian Journal of Pharmaceutical and Clinical Research, 6(7), pp.98-103.

Mishra, V.K. et al., 2017. Determination and production of antimicrobial compounds by Aspergillus clavatonanicus strain MJ31, an endophytic fungus from Mirabilis jalapa L., using UPLC-ESI-MS/MS and TD-GC-MS analysis. PLoS One, 12(10), e0186234. doi: 10.1371/journal.pone.0186234.

Naik, S. et al., 2019. How and why do endophytes produce plant secondary metabolites? Symbiosis, 78, pp.193–201. doi: 10.1007/s13199-019-00614-6

Navarrete-Bolaños, J.L. et al., 2017. An Experimental Strategy Validated to Design Cost-Effective Culture Media Based on Response Surface Methodology. Preparative Biochemistry and Biotechnology, 47(6), pp.1532-2297. doi: 10.1080/10826068.2017.1280825

Okukawa, M. et al., 2021. Selective Antibacterial Activity of Mixed Systems Containing Myristic Acid against Staphylococci. Journal of Oleo Science, 70(9), pp.1239-1246. doi: 10.5650/jos.ess21090.

Pang, Z. et al., 2021. Linking Plant Secondary Metabolites and Plant Microbiomes: A Review. Frontiers in Plant Science, 12, 621276. doi: 10.3389/fpls.2021.621276

Pant, S. et al., 2021. Fungal endophytes as a potential source of therapeutically important metabolites. In Fungi Bio-Prospects in Sustainable Agriculture, Environment and Nano-technology. Academic Press, pp.275–314. doi: 10.1016/b978-0-12-821734-4.00010-1

Preethi, K., Mani, V.M. & Lavanya, N., 2021. Endophytic Fungi: A Potential Source of Bioactive Compounds for Commercial and Therapeutic Applications. In Endophytes. Springer Nature, pp.247-272. doi: 10.1007/978-981-15-9371-0_12#DOI.

Ramadhani, I. et al., 2021. Study on Endophytic Fungi Associated with Moringa oleifera Lam. Collected from Lombok Island, West Nusa Tenggara. Annales Bogorienses, 24(2), pp.66-73. doi: 10.14203/ann.bogor.2020.v24.n2.66-73.

Ramesha, K.P. et al., 2020. Antimicrobial metabolite profiling of Nigrospora sphaerica from Adiantum philippense L. Journal of Genetic Engineering and Biotechnology, 18(66), pp.1–9. doi: 10.1186/s43141-020-00080-

Rao, H.C.Y. et al., 2015. Molecular Profiling and Antimicrobial Potential of Endophytic Gliomastix polychroma CLB32 inhabiting Combretum latifolium Blume. Mycology, 6(3-4), pp.176-181. doi:10.1080/21501203.2015.1113207.

Rausch, P. et al., 2019. Comparative analysis of amplicon and metagenomic sequencing methods reveals key features in the evolution of animal metaorganisms. Microbiome, 7(1), 133. doi: 10.1186/s40168-019-0743-1

Rathod, R.R. et al., 2015. Molecular characterization of ridge gourd (Luffa acutangula L.) and sponge gourd (Luffa cylindarica L.) genotypes through PCR-based molecular markers. International Journal of Agriculture, Environment, and Biotechnology, 8(3), pp.521- 530. doi: 10.5958/2230 732X.2015.00059.5.

Salam, M.A. et al., 2023. Antimicrobial Resistance: A Growing Serious Threat for Global Public Health. Healthcare, 11(13), 1946. doi:10.3390/healthcare11131946

Schulz, B. et al., 2002. Endophytic Fungi: A Source of Novel Biologically Active Secondary Metabolites. Mycology Research. 106(9), pp.996–1004. doi: 10.1017/S0953756202006342

Sette, L.D. et al., 2006. Molecular characterization and antimicrobial activity of endophytic fungi from coffee plant. World Journal of Microbiology Biotechnology, 22, pp.1185-1195. doi: 10.1007/s11274-006-9160-2

Shen, X.Y. et al., 2014. Diversity and antimicrobial activity of culturable endophytic fungi isolated from moso bamboo seeds. PloS one, 9(4), e95838. doi: 10.1371/journal.pone.0095838.

Singariya, P., Kumar, P. & Mourya, K.K., 2013. Antimcrobial Activity and Identification of 4,22-stigmastadiene-3-one and some other Compounds in Motha Dhaman Grass Cenchrus setigerus from Tribal Area of Western Rajasthan. Proceedings of National Academy of Science, India, Sect. B Biol. Sci., 83, pp.415-421, doi: 10.1007/s40011-012-0135-9

Singh, V. et al., 2017. Strategies for Fermentation Medium Optimization: An In-depth Review. Frontiers in Microbiology, 7, 2087. doi: 10.3389/fmicb.2016.02087.

Taufiq, M.M.J. & Darah, I., 2018. Fungal endophytes isolated from leaves of a medicinal plant, Ocimum sanctum Linn and evaluation of their antimicrobial activities. African Journal of Microbiology Research, 12(26), pp.616-622. doi: 10.5897/AJMR2018.8812.

Teimoori-Boghsani, Y. et al., 2020. Endophytic Fungi of Native Salvia abrotanoides Plants Reveal High Taxonomic Diversity and Unique Profiles of Secondary Metabolites. Frontiers in Microbiology, 10, 3013. doi: 10.3389/fmicb.2019.03013.

Tonial, F. et al., 2016. Influence of Culturing Conditions on Bioprospecting and Antimicrobial Potential of Endophytic fungi from Schinus terebinthifolius. Current Microbiology, 72(2), pp.173-183. doi: 10.1007/s00284-015-0929-0.

Vellingiri, M.M. et al., 2020. Statistical Optimization of Parameters for Enhanced Bioactive Metabolites produced by Streptomyces hygroscopicus AVS7. Arabian Journal for Science and Engineering, 46, pp.5345-5360. doi: 10.1007/s13369-020-05116-y.

Verma, S.K.R., Lal, M. & Debnath, M., 2017. Optimization of Process Parameters for Production of Antimicrobial Metabolites by an Endophytic Fungus Aspergillus Sp. CPR5 Isolated from Calotropis procera root. Asian Journal of Pharmaceutical and Clinical Research, 10(4), pp.225-230. doi: 10.22159/ajpcr.2017.v10i4.16631

Walsh, T.R. et al., 2023. Antimicrobial Resistance: Addressing a Global Threat to Humanity. Antimicrobial Resistance: Addressing a Global Threat to Humanity, 20(7), e1004264. doi: 10.1371/Journal.Pmed.1004264

Watanabe, T., 2002. Pictorial Atlas of Soil and Seed Fungi: Morphologies of Cultured Fungi and key to species, 2nd Edition, Washington: CRC Press. doi: 10.1201/9781420040821.

Yadav, G. & Meena, M., 2021. Bioprospecting of endophytes in medicinal plants of Thar Desert: An attractive resource for biopharmaceuticals. Biotechnology reports (Amsterdam, Netherlands), 30, e00629. doi: 10.1016/j.btre.2021.e00629.

Zakariyah, R.F. et al., 2017. Screening of Prosopsis africana for Antimicrobial activity against selected oral pathogens. Nigerian Journal of Pure and Applied Sciences, 30(2), pp.3049-3058. doi: 10.19240/njpas.2017.B05.

Zhang, K. et al., 2020. Microfluidic systems for rapid antibiotic Susceptibility tests (ASTs) at single-cell level. Chemical Science, 11, 6352. doi: 10.1039/d0sc01353f.

Published
2025-01-10
How to Cite
Rahmat Folashade Zakariyah, Risikat Nike Ahmed, Kamoldeen Abiodun Ajijolakewu and Abdulmumeen Amao Hamid (2025) “Enhanced Antibacterial Potential of Fractionated Bioactive Compounds Isolated from Endophytic Nigrospora oryzae UILRZ1 in Ocimum gratissimum”, Journal of Tropical Biodiversity and Biotechnology, 10(1), p. jtbb.12019. doi: 10.22146/jtbb.12019.
Section
Research Articles