The Effect of Thidiazuron and Naphtalene Acetic Acid on In Vitro Development of Eria hyacinthoides (Blume) Lindl Orchid
Abstract
Eria hyacinthoides (Blume) Lindl. is an Indonesian orchid species found in Sumatra, Java, and Bali. This orchid is a sympodial orchid with flowers that has fragrant aroma, suspected containing phytochemicals for herbal medicines, so mass plant propagation is necessary. The aim of this research is to obtain the best in vitro conditions for this orchid through somatic embryos using growth regulators and analysing the structure of the Dendrobium Orchid Homeobox 1 (DOH1) homologous gene in E. hyacinthoides to Dendrobium ‘Madame Thong-In’ which is known to induce bud formation. The method used in this study: (1) the leaves of the plant spread about 20 - 30 days from shoots measuring about 6.3-6.7cm on the mother plant aged ± 8 years, stored in an incubation room with picture of 16 hours of light and 8 hours of darkness in the heat. 25 ± 1 ℃, (2) compared Murashige and Skoog, Vacin and Went, Knudson C and New Phalaenopsis growth to get the best medium, (3) added PGR to medium (Thidiazuron (TDZ) 1 - 3 mg L-1 and Naphthalene-1-acetic acid (NAA) 1-3 mg L-1), (4) isolate partial gen DOH1 homologous by using primer of DOH1, (5) analyse sequence of PCR products. Optimal medium for callus embryogenesis production from leave was Knudson C + TDZ 1 mg L-1 + NAA 1 mg L-1. Amplification of DNA fragments using degenerate primers of DOH1 resulted 175 bp, indicating similarity about 88.64 % with between the DOH1 gene structure in E. hyacinthoides and in Dendrobium ‘Madame Thong-In’.
References
Bhatla, S.C. & Lal, M.A., 2018. Plant Physiology, Development and Metabolism, Nature Publishing Group.
Balilashaki, K. & Ghehsareh, G.M., 2016. Micropropagation of Phalaenopsis amabilis var. ‘Manila’ by Leaves Obtained from in vitro Culturing the Nodes of Flower Stalks. Notulae Scientia Biologicae, 8(2), pp.164-169. doi: 10.15835/nsb829782.
Bhattacharyya, P. et al., 2019. Deciphering the Phenolic Acid Reserves and Antioxidant Activity Within the Protocorm-Like Bodies of Ansellia africana: A vulnerable Medicinal Orchid. Industrial Crops and Products, 135, pp.21-29. doi: 10.1016/j.indcrop.2019.03.024.
Chookoh, N. et al., 2019. Micropropagation of Tolumnia orchids through induction of protocorm-like bodies from leaf segments. HortScience, 54(7), pp.1230-1236. doi: 10.21273/HORTSCI13747-18.
Chung, H.H. et al., 2007. Plant regeneration through direct somatic embryogenesis from leaf explants of Dendrobium. Biologia Plantarum, 51(2), pp.346-350. doi: 10.1007/s10535-007-0069-x.
Feng, J.H. & Chen, J.T., 2014. A novel in vitro protocol for inducing direct somatic embryogenesis in Phalaenopsis aphrodite without taking explants. Scientific World Journal, 2014(1), 263642. doi: 10.1155/2014/263642.
Furumizu, C. et al., 2015. Antagonistic Roles for KNOX1 and KNOX2 Genes in Patterning the Land Plant Body Plan Following an Ancient Gene Duplication. PLoS Genet, 11(2), e1004980. doi: 10.1371/journal.pgen.1004980.
Gan, Z.-M. et al., 2023. Genome-Wide Classification and Evolutionary Analysis of the KNOX Gene Family in Plants. Horticulturae, 9(1), 1174. doi: 10.3390/ horticulturae9111174.
Jiang, H. et al., 2017. In vitro Germination and Low-Temperature Seed Storage of Cypripedium lentiginosum P.J.Cribb & S.C.Chen, a Rare and Endangered Lady’s Slipper Orchid. Scientia Horticulturae, 225, pp.471-479. doi: 10.1016/j.scienta.2017.07.040.
Kasi, P.D. & Semiarti, E., 2016. Pengaruh Thidiazuron dan Naphtalene Acetic Acid untuk Induksi Embriogenesis Somatik Dari Daun Anggrek Phalaenopsis ‘Sogo Vivien’. Jurnal Dinamika, 7(1), pp.31-40.
Kim, D.H. et al., 2019. Impact of Activated Charcoal, Culture Medium Strength and Thidiazuron on Non-Symbiotic In Vitro Seed Germination of Pecteilis radiata (Thunb.) Raf. South African Journal of Botany, 124, pp.144-150. doi: 10.1016/j.sajb.2019.04.015.
Kim, D.H. et al., 2019. In vitro Germination and Seedling Development of Gastrochilus japonicus (Makino) Schltr. Propagation of Ornamental Plants, 19(3), pp.61-65.
Mose, W. et al., 2017. The Influence of Thidiazuron on Direct Somatic Embryo Formation from Various Types of Explant in Phalaenopsis amabilis (L.) Blume Orchid. HAYATI Journal of Biosciences, 24(4), pp.201-205. doi: 10.1016/j.hjb.2017.11.005.
Murray, M.G. & Thompson, W., 1980. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research, 8(19), pp.4321-4326. doi: 10.1093/nar/8.19.4321.
Ningrum, E.F.C. et al., 2017. Perkembangan Awal Protocorm Anggrek Phalaenopsis amabilis secara In Vitro setelah Penambahan Zat Pengatur Tumbuh α-Naphtaleneacetic Acid dan Thidiazuron. Biosfera, 34(1), pp.9-14. doi: 10.20884/1.mib.2017.34.1.393.
Nursanti et al., 2020. Eksplorasi Anggrek di Hutan Adat Gunung Batuah Kecamatan Gunung Raya Kabupaten Kerinci Jambi. Jurnal Silva Tropika,4(1), pp.280-291.
Parthibhan, S. et al., 2015. In vitro Regeneration from Protocorms in Dendrobium aqueum Lindley - An Imperiled Orchid. Journal of Genetic Engineering and Biotechnology, 13(2), pp.227-233. doi: 10.1016/j.jgeb.2015.07.001.
Radoeva, T. & Weijers, D., 2014. A Roadmap to Embryo Identity in Plants. In Trends in Plant Science, 19(11), pp.709-716. doi: 10.1016/j.tplants.2014.06.009.
Ruben, V. et al., 2022. Isolation and Characterization of Vanda Orchid Homeobox Gene from Vanda tricolor var. suavis Lindl. form Merapi. 7th International Conference on Biological Science (ICBS 2021), Advances in Biological Sciences Research. doi: 10.2991/absr.k.220406.036.
Schmid, R., 1999. Review of Plant Microtechnique and Microscopy, by S. E. Ruzin. Taxon, 48(3), pp.322.
Semiarti, E. et al., 2020. Biotechnology Approaches on Characterization, Mass Propagation, and Breeding of Indonesian Orchids Dendrobium lineale (Rolfe.) and Vanda tricolor (Lindl.) with Its Phytochemistry. In Orchids Phytochemistry, Biology and Horticulture. Reference Series in Phytochemistry. Springer, pp.1-14. doi: 10.1007/978-3-030-11257-8_12-1.
Semiarti, E., 2018. Orchid biotechnology for Indonesian orchids conservation and industry. AIP Conference Proceedings, 2002, 020022. doi: 10.1063/1.5050118.
Semiarti, E. et al., 2008. Isolation and Characterization of Phalaenopsis Orchid Homeobox (POH1) cDNAS, KNOTTED1-Like Homeobox Family of Genes in Phalaenopsis amabilis Orchid. Proceeding of 2nd International Conference on Mathematics and Natural Science (ICMNS).
Sun, Q. et al., 2014. Isolation of a New Flavonone Glycoside from Eria marginata. Bulletin of the Korean Chemical Society, 35(8), pp.2544-2546. doi: 10.5012/bkcs.2014.35.8.2544.
Viola, I.L. & Gonzalez, D.H., 2016. Structure and Evolution of Plant Homeobox Genes. Plant Transcription Factors: Evolutionary, Structural and Functional Aspects, pp.101-112. doi: 10.1016/B978-0-12-800854-6.00006-3.
Wang, L. et al., 2012. Chemical Constituents of Eria spicata. Chemistry of Natural Compounds, 48(1), pp.168-169. doi: 10.1007/s10600-012-0194-4.
Yu, H. et al., 2000. DOH1, a Class 1 KNOX Gene, is Required for Maintenance of The Basic Plant Architecture and Floral Transition in Orchid. Plant Cell, 12(11), pp.2143-2159. doi: 10.1105/tpc.12.11.2143.
Yuan, X.Y. et al., 2014. Evaluation of internal control for gene expression in Phalaenopsis by quantitative real-time PCR. Applied Biochemistry and Biotechnology, 173(6), pp.1431-1445. doi: 10.1007/s12010-014-0951-x.