Antifeedant Activity of Limonoids from the Seeds of Lansium domesticum Corr. Against Subterranean Termite Coptotermes curvignathus

  • Rudiyansyah Chemistry Department, Faculty of Mathematics and Natural Sciences, Universitas Tanjungpura, Jl. Prof. Dr. Hadari Nawawi, 78124, Pontianak, West Kalimantan, Indonesia https://orcid.org/0000-0002-2337-7666
  • Eka Pebri Malinda Chemistry Department, Faculty of Mathematics and Natural Sciences, Universitas Tanjungpura, Jl. Prof. Dr. Hadari Nawawi, 78124, Pontianak, West Kalimantan, Indonesia
  • Andi Hairil Alimuddin Chemistry Department, Faculty of Mathematics and Natural Sciences, Universitas Tanjungpura, Jl. Prof. Dr. Hadari Nawawi, 78124, Pontianak, West Kalimantan, Indonesia https://orcid.org/0000-0002-2422-9366
  • Ajuk Sapar Chemistry Department, Faculty of Mathematics and Natural Sciences, Universitas Tanjungpura, Jl. Prof. Dr. Hadari Nawawi, 78124, Pontianak, West Kalimantan, Indonesia https://orcid.org/0000-0002-7278-6159
  • Yuliati Indrayani Faculty of Forestry, Universitas Tanjungpura, Jl. Prof. Dr. Hadari Nawawi, 78124, Pontianak, West Kalimantan, Indonesia https://orcid.org/0000-0002-0077-0780
Keywords: Coptotermes curvignathus, Dukunolide, Lansium domesticum, Limonoid, Meliaceae

Abstract

Lansium domesticum is one of Meliaceae plants produces limonoids with various biological activities, except for anti termites. Seven limonoids, dukunolides A-D (DA-DD), F (DF), and langsatides A-B (LA and LB), each previously isolated from the seeds of L. domesticum and prepared at 5 %, together with methanol root extract (MRE) 5 % were evaluated for insecticidal activity against Coptotermes curvignathus. Fifty workers and five soldiers of C. curvignathus were tested in a No-Choice Test to determine which limonoid was the most active. Dukunolides A-D, F, langsatides A-B, and MRE showed weaker antifeedant activity than the regent 50sc (positive standart, 8.04 %), except for dukunolide B (DB) that was stronger antifeedant activity, with a 7.28 % paper weight loss and 33.3 % mortality against C. curvignathus. Conclusion, this study showed limonoid compounds that were isolated from the seeds of L. domesticum could be developed for antitermite drugs.

References

Bentley, M.D. et al., 1988. Structure-activity studies of modified citrus limonoids as antifeedants for Colorado potato beetle larvae, Leptinotarsa decemlineata. Entomologia Experimentalis et Applicata, 49(3), pp.189–193. doi: 10.1111/j.1570-7458.1988.tb01179.x

Bourminta, Y. et al., 2013. Anti-termitic activity of aqueous extracts from saharan toxic plants against Anacanthotermes ochraceus. Journal of Entomology, 10(4), pp.207-213. doi: 10.3923/je.2013.207.213

Güzel, S. et al., 2017. Phytochemical composition and antifeedant activity of five vincetoxicum taxa against Spodoptera littoralis and Leptinotarsa decemlineata. Marmara Pharmaceutical Journal, 21(4), pp.872-880. doi: 10.12991/mpj.2017.28

Happi, G.M. et al., 2018. Phytochemistry and pharmacology of the genus Entandrophragma over the 50 years from 1967 to 2018: a ‘golden’ overview. Journal of Pharmacy and Pharmacology, 70(11), pp.1431-1460. doi: 10.1111/jphp.13005

Indrayani, Y. & Alkhadi., 2021. Activity of Mikania micrantha leaf extract against subterranian termite and wood decay. Berkala Penelitian Hayati, 26(2), pp.53-59. doi: 10.23869/bphjbr.26.2.20211

Indrayani, Y., Muin, M. & Yoshimura, T., 2016. Crude extracts of two different leaf plant species and their responses against subterranean termite Coptotermes formosanus. Nusantara Bioscience, 8(2), pp.226-231. doi: 10.13057/nusbiosci/n080215

Kadir, R. et al., 2015. Chemical compositions and termiticidal activities of the heartwood from Calophyllum inophyllum L. Anais Da Academia Brasileira De Ciencias, 87(2), pp.743-751. doi: 10.1590/0001-3765201520140041

Leaman, D.J. et al., 2015. Malaria remedies of the Kenyah of the Apo Kayan, East Kalimantan, Indonesian Borneo: A quantitative assessment of local consensus as an indicator of biological efficacy. Journal of Ethnopharmacology, 49(1), pp.1-16. doi: 10.1016/0378-8741(95)01289-3

Lin, M. et al., 2022. Insecticidal triterpenes in meliaceae: plant species, molecules, and activities: part II (Cipadessa, Melia). International Journal of Molecular Sciences, 23(10), 5329. doi: 10.3390/ijms23105329

Liu, S. et al., 2019. Antifeedant and ovicidal activities of ginsenosides against asian corn borer, Ostrinia furnacalis (Guenee). PLoS ONE, 14(2), e0211905. doi: 10.1371/journal.pone.0211905

Matos, A.P. et al., 2014. Effects of limonoids from Cipadesa fruticosa on fall armyworm. Zeitschrift für Naturforschung C – A Journal of Biosciences, 64(5-6), pp.441-446. doi: 10.1515/znc-2009-5-623

Mayanti, T. et al., 2011. Antifeedant triterpenoids from the seeds and bark of Lansium domesticum cv Kokossan (Meliaceae). Molecules, 16(4), pp.2785-2795. doi: 10.3390/molecules16042785

McKenzie, N. et al., 2010. Azadirachtin: an effective systemic insecticide for control of Agrilus planipennis (Coleoptera: Buprestidae). Journal of Economic Entomology, 103(3), pp.708-717. doi: 10.1603/EC09305

Monzon, R.B., et al., 1994. Larvicidal potential of five Philippines plants against Aedes aegypti (Linnaeus) and Culex quinquefasciatus (Say). The Southeast Asian Journal of Tropical Medicine and Public Health, 25(4), pp.755–759.

Nakayama, F.S. & Osbrink, W.L., 2010. Evaluation of kukui oil (Aleurites moluccana) for controlling termites. Industrial Crops and Products, 31(2), pp.312-315. doi: 10.1016/j.indcrop.2009.11.009

Nebo, L. et al., 2015. Phytotoxicity of triterpenes and limonoids from the rutaceae and meliaceae. 5α,6β,8α,12α-tetrahydro-28-norisotoonafolin – a potent phytotoxin from Toona ciliata. Natural Product Communications, 10(1), pp.17-20. doi: 10.1177/1934578X1501000107

Ohmura, W. et al., 2000. Antifeedant activity of flavonoids and related compounds against the subterranean termite Coptotermes formosanus Shiraki. Journal of Wood Science, 46, pp.149-153. doi: 10.1007/BF00777362

Oramahi, H.A. et al., 2023. The composition and termicidal activity of vinegar from medang wood (Cinnamomum sp.) under different pyrolysis temperature. Floresta e Ambiente, 30(3), e20230016. doi: 10.1590/2179-8087-FLORAM-2023-0016

Pardede, A. et al., 2018. Chemical constituents of Coreopsis lanceolata stems and their antitermitic activity against the subterranean termite Coptotermes curvignathus. of Economic Entomology, 111(2), pp.803-807. doi: 10.1093/jee/tox376

Quiroz, A. et al., 2017. Antifeedant activity of red clover root isoflavonoids on Hylastinus obscurus. Journal of Soil Science and Plant Nutrition, 17(1), pp.231-239. doi: 10.4067/S0718-95162017005000018

Rudiyansyah et al., 2018. New tetranortriterpenoids, langsatides A and B from the seeds of Lansium domesticum Corr. (Meliaceae). Phytochemistry Letters , 23, pp.90-93. doi: 10.1016/j.phytol.2017.11.019

Roy, A. & Saraf, S., 2006. Limonoids: overview of significant bioactive triterpenes distributed in plant kingdom. Biological and Pharmaceutical Bulletin, 29(2), pp.191-201. doi: 10.1248/bpb.29.191

Saewan, N., Sutherland, J.D. & Chantrapromma, K., 2006. Antimalarial tetranortriterpenoids from the seeds of Lansium domesticum Corr. Phytochemistry, 67(20), pp.2288-2293. doi: 10.1016/j.phytochem.2006.07.005

Shi, Y.S. et al., 2020. Limonoids from citrus: chemistry, anti-tumor potential, and other bioactivities. Journal of Functional Foods, 75, 104213. doi: 10.1016/j.jff.2020.104213

Su, N.Y. & Scheffrahn, R.H., 1998. A review of subterranean termite control practices and prospects for integrated pest management programmes. Integrated pest management reviews, 3(1), pp.1-13. doi: 10.1023/A:1009684821954

Sun, Y.P. et al., 2018. Chemical structures and biological activities of limonoids from the genus Swietensia (Meliaceae). Molecules, 23(7), pp.1-17. doi: 10.3390/molecules23071588

Published
2025-01-10
How to Cite
Rudiyansyah, Malinda, E. P., Alimuddin, A. H., Sapar, A. and Indrayani, Y. (2025) “Antifeedant Activity of Limonoids from the Seeds of Lansium domesticum Corr. Against Subterranean Termite Coptotermes curvignathus”, Journal of Tropical Biodiversity and Biotechnology, 10(1), p. jtbb11823. doi: 10.22146/jtbb.11823.
Section
Research Articles