Antifeedant Activity of Limonoids from the Seeds of Lansium domesticum Corr. Against Subterranean Termite Coptotermes curvignathus

  • Rudiyansyah Chemistry Department, Faculty of Mathematics and Natural Sciences, Universitas Tanjungpura, Jl. Prof. Dr. Hadari Nawawi, 78124, Pontianak, West Kalimantan, Indonesia https://orcid.org/0000-0002-2337-7666
  • Eka Pebri Malinda Chemistry Department, Faculty of Mathematics and Natural Sciences, Universitas Tanjungpura, Jl. Prof. Dr. Hadari Nawawi, 78124, Pontianak, West Kalimantan, Indonesia
  • Andi Hairil Alimuddin Chemistry Department, Faculty of Mathematics and Natural Sciences, Universitas Tanjungpura, Jl. Prof. Dr. Hadari Nawawi, 78124, Pontianak, West Kalimantan, Indonesia https://orcid.org/0000-0002-2422-9366
  • Ajuk Sapar Chemistry Department, Faculty of Mathematics and Natural Sciences, Universitas Tanjungpura, Jl. Prof. Dr. Hadari Nawawi, 78124, Pontianak, West Kalimantan, Indonesia https://orcid.org/0000-0002-7278-6159
  • Yuliati indrayani Faculty of Forestry, Universitas Tanjungpura, Jl. Prof. Dr. Hadari Nawawi, 78124, Pontianak, West Kalimantan, Indonesia https://orcid.org/0000-0002-0077-0780
Keywords: Coptotermes curvignathus, Dukunolide, Lansium domesticum, Limonoid, Meliaceae

Abstract

Lansium domesticum is one of Meliaceae plants produces limonoids with various biological activities, except for anti termites. Seven limonoids, dukunolides A-D (DA-DD), F (DF), and langsatides A-B (LA and LB), each previously isolated from the seeds of L. domesticum and prepared at 5 %, together with methanol root extract (MRE) 5 % were evaluated for insecticidal activity against Coptotermes curvignathus. Fifty workers and five soldiers of C. curvignathus were tested in a No-Choice Test to determine which limonoid was the most active. Dukunolides A-D, F, langsatides A-B, and MRE showed weaker antifeedant activity than the regent 50sc (positive standart, 8.04 %), except for dukunolide B (DB) that was stronger antifeedant activity, with a 7.28 % paper weight loss and 33.3 % mortality against C. curvignathus. Conclusion, this study showed limonoid compounds that were isolated from the seeds of L. domesticum could be developed for antitermite drugs.

References

Bentley, M.D. et al., 1988. Structure-activity studies of modified citrus limonoids as antifeedants for Colorado potato beetle larvae, Leptinotarsa decemlineata. Entomol Exp Appl, 49(3), pp.189–193. doi: https://doi.org/10.1111/j.1570-7458.1988.tb01179.x
Bourminta, Y. et al., 2013. Anti-termitic activity of aqueous extracts from saharan toxic plants against Anacanthotermes ochraceus. J. Entomol, 10(4), pp.207-213. doi: https://doi.org/10.3923/je.2013.207.213
Güzel, S. et al., 2017. Phytochemical composition and antifeedant activity of five vincetoxicum taxa against Spodoptera littoralis and Leptinotarsa decemlineata. Marmara Pharm J, 21(4), pp.872-880. doi: https://doi.org/10.12991/mpj.2017.28
Happi, G.M. et al., 2018. Phytochemistry and pharmacology of the genus Entandrophragma over the 50 years from 1967 to 2018: a ‘golden’ overview. J Pharm Pharmacol, 70(11), pp.1431-1460. doi: https://doi.org/10.1111/jphp.13005
Indrayani, Y., Muin M. & Yoshimura T., 2016. Crude extracts of two different leaf plant species and their responses against subterranean termite Coptotermes formosanus. Nusantara Biosci, 8(2), pp.226-231. doi: https://doi.org/10.13057/nusbiosci/n080215
Kadir, R. et al., 2015. Chemical compositions and termiticidal activities of the heartwood from Calophyllum inophyllum L. An Acad Bras Cienc, 87(2), pp.743-751. doi: https://doi.org/10.1590/0001-3765201520140041
Leaman, D.J. et al., 2015. Malaria remedies of the Kenyah of the Apo Kayan, East Kalimantan, Indonesian Borneo: A quantitative assessment of local consensus as an indicator of biological efficacy. J Ethnopharmacol, 49(1), pp.1-16. doi: https://doi.org/10.1016/0378-8741(95)01289-3
Lin, M. et al., 2022. Insecticidal triterpenes in meliaceae: plant species, molecules, and activities: part II (Cipadessa, Melia). Int J Mol Sci, 23(10), pp.1-40. doi: https://doi.org/10.3390/ijms23105329
Liu, S. et al., 2019. Antifeedant and ovicidal activities of ginsenosides against asian corn borer, Ostrinia furnacalis (Guenee). PLoS ONE, 14(2), e0211905. doi: https://doi.org/10.1371/journal.pone.0211905
Matos, A.P. et al., 2014. Effects of limonoids from Cipadesa fruticosa on fall armyworm. Z. Naturforsch., C, J. Biosci, 64(5-6), pp.441-446. doi: https://doi.org/10.1515/znc-2009-5-623
Mayanti, T. et al., 2011. Antifeedant triterpenoids from the seeds and bark of Lansium domesticum cv Kokossan (Meliaceae). Molecules, 16(4), pp.2785-2795. doi: https://doi.org/10.3390/molecules16042785
McKenzie, N. et al., 2010. Azadirachtin: an effective systemic insecticide for control of Agrilus planipennis (Coleoptera: Buprestidae). J Econ Entomol, 103(3), pp.708-717. doi: https://doi.org/10.1603/EC09305
Monzon, R.B, et al., 1994. Larvicidal potential of five Philippines plants against Aedes aegypti (Linnaeus) and Culex quinquefasciatus (Say). Southeast Asian J. Trop. Med. Public Health, 25(4), pp.755–759.
Nakayama, F.S. & Osbrink, W.L., 2010. Evaluation of kukui oil (Aleurites moluccana) for controlling termites. Ind Crops Prod, 31(2), pp.312-315. doi: https://doi.org/10.1016/j.indcrop.2009.11.009
Nebo, L. et al., 2015. Phytotoxicity of triterpenes and limonoids from the rutaceae and meliaceae. 5α,6β,8α,12α-tetrahydro-28-norisotoonafolin – a potent phytotoxin from Toona ciliata. Nat Prod Commun, 10(1), pp.17-20.
Ohmura, W. et al., 2000. Antifeedant activity of flavonoids and related compounds against the subterranean termite Coptotermes formosanus Shiraki. J Wood Sci, 46, pp.149-153. doi: https://doi.org/10.1007/BF00777362
Pardede, A. et al., 2018. Chemical constituents of Coreopsis lanceolata stems and their antitermitic activity against the subterranean termite Coptotermes curvignathus. J Econ Entomol, 111(2), pp.803-807. doi: https://doi.org/10.1093/jee/tox376
Quiroz, A. et al., 2017. Antifeedant activity of red clover root isoflavonoids on Hylastinus obscurus. J. Soil Sci. Plant Nutr, 17(1), pp.231-239. doi: https://dx.doi.org/10.4067/S0718-95162017005000018
Rudiyansyah, et al., 2018. New tetranortriterpenoids, langsatides A and B from the seeds of Lansium domesticum Corr. (Meliaceae). Phytochem Lett, 23, pp.90-93. doi: https://doi.org/10.1016/j.phytol.2017.11.019
Roy, A. & Saraf S., 2006. Limonoids: overview of significant bioactive triterpenes distributed in plant kingdom. Biol. Pharm. Bull, 29(2), pp.191-201. doi: https://doi.org/10.1248/bpb.29.191
Saewan, N., Sutherland, J.D. & Chantrapromma, K., 2006. Antimalarial tetranortriterpenoids from the seeds of Lansium domesticum Corr. Phytochemistry, 67(20), pp.2288-2293. doi: https://doi.org/10.1016/j.phytochem.2006.07.005
Shi, Y.S. et al., 2020. Limonoids from citrus: chemistry, anti-tumor potential, and other bioactivities. J. Funct Foods, 75, 104213. doi: https://doi.org/10.1016/j.jff.2020.104213
Su, N.Y. & Scheffrahn R.H., 1998. A review of subterranean termite control practices and prospects for integrated pest management programmes. Integrated pest management reviews, 3(1), pp.1-13. doi: https://doi.org/10.1023/A:1009684821954
Sun, Y.P. et al., 2018. Chemical structures and biological activities of limonoids from the genus Swietensia (Meliaceae). Molecules, 23(7), pp.1-17. doi: https://doi.org/10.3390/molecules23071588
Published
2025-01-10
How to Cite
Rudiyansyah, Eka Pebri Malinda, Andi Hairil Alimuddin, Ajuk Sapar and Yuliati indrayani (2025) “Antifeedant Activity of Limonoids from the Seeds of Lansium domesticum Corr. Against Subterranean Termite Coptotermes curvignathus”, Journal of Tropical Biodiversity and Biotechnology, 10(1), p. jtbb.11823. doi: 10.22146/jtbb.11823.
Section
Research Articles