Small-Scale Wind Turbine Selection Based on Wind Energy Potential Analysis Using Windographer

  • Dwi Risdianto Centre for Energy Conversion and Conservation Research, National Research and Innovation Agency, Jalan Raya Puspiptek, Kota Tangerang Selatan, Banten 15310, Indonesia
  • Nurry Widya Hesty Centre for Energy Conversion and Conservation Research, National Research and Innovation Agency, Jalan Raya Puspiptek, Kota Tangerang Selatan, Banten 15310, Indonesia
  • Toha Zaky Centre for Energy Conversion and Conservation Research, National Research and Innovation Agency, Jalan Raya Puspiptek, Kota Tangerang Selatan, Banten 15310, Indonesia
  • Rudi Purwo Wijayanto Centre for Energy Conversion and Conservation Research, National Research and Innovation Agency, Jalan Raya Puspiptek, Kota Tangerang Selatan, Banten 15310, Indonesia
  • Agustina Putri Mayasari Centre for Energy Conversion and Conservation Research, National Research and Innovation Agency, Jalan Raya Puspiptek, Kota Tangerang Selatan, Banten 15310, Indonesia
  • Ario Witjakso Centre for Energy Conversion and Conservation Research, National Research and Innovation Agency, Jalan Raya Puspiptek, Kota Tangerang Selatan, Banten 15310, Indonesia
Keywords: Wind Energy, Wind Speed, Miangas Island, Wind Turbine, Windographer

Abstract

Wind energy is a renewable resource with significant potential for generating electricity, particularly in small islands not connected to the State Electricity Company (Perusahaan Listrik Negara, PLN) grid. This study estimated the electrical energy production of small-scale wind turbines using Windographer software, based on an analysis of wind energy potential utilizing the Weibull distribution. The research focused on selecting small-scale wind turbines tailored to the wind energy potential and electricity needs of Miangas Island, North Sulawesi. The estimation of electrical energy production was conducted using the frequency distribution of wind speeds recorded hourly at a height of 50 m over the 2011–2020 period. The analysis encompasses average wind speed, wind direction distribution, Weibull distribution, average wind power density, and the annual estimation of electrical energy production. The results indicated that Miangas Island had an average annual wind speed of 5.5 m/s, with a wind speed frequency distribution of 15% and an average wind power density of 160.9 W/m². Simulations based on the analyzed wind potential demonstrated that small-scale wind turbines with capacities of 50 kW, 35 kW, and 10 kW could generate 98,434.49 kWh/year, 75,738.78 kWh/year, and 15,875.48 kWh/year, respectively. Considering the energy supply-demand balance, a 35-kW wind turbine is identified as the optimal choice to meet the annual electrical energy demand of Miangas Island, which is approximately 25,550 kWh.

References

D. Bogdanov et al., “Low-cost renewable electricity as the key driver of the global energy transition towards sustainability,” Energy, vol. 227, pp. 1–12, Jul. 2021, doi: 10.1016/j.energy.2021.120467.

X.-Y. Tang et al., “Micro-scale wind resource assessment in complex terrain based on CFD coupled measurement from multiple masts,” Appl. Energy, vol. 238, pp. 806–815, Mar. 2019, doi: 10.1016/j.apenergy.2019.01.129.

C. Jung and D. Schindler, “Introducing a new approach for wind energy potential assessment under climate change at the wind turbine scale,” Energy Convers. Manag., vol. 225, pp. 1–13, Dec. 2020, doi: 10.1016/j.enconman.2020.113425.

D.G. Cendrawati et al., “Short-term wind energy resource prediction using weather research forecasting model for a location in Indonesia,” Int. J. Technol., vol. 14, no. 3, pp. 584–595, May 2023, doi: 10.14716/ijtech.v14i3.5803.

L.M. Bensalah, F. Chellali, and B.M. Islem, “Estimation of wind energy potential using WAsP model in the sub watershed of Oued-Sakni region-Algeria,” Wind Eng., vol. 46, no. 5, pp. 1657–1672, Oct. 2022, doi: 10.1177/0309524X221096247.

H. Meschede, P. Holzapfel, F. Kadelbach, and J. Hesselbach, “Classification of global island regarding the opportunity of using RES,” Appl. Energy, vol. 175, pp. 251–258, Agu. 2016, doi: 10.1016/j.apenergy.2016.05.018.

K. Sperling, “How does a pioneer community energy project succeed in practice? The case of the Samsø renewable energy island,” Renew. Sustain. Energy Rev., vol. 71, pp. 884–897, May 2017, doi: 10.1016/j.rser.2016.12.116.

B.S. Hodge et al., “Addressing technical challenges in 100% variable inverter-based renewable energy power systems,” WIREs Energy Environ., vol. 9, no. 5, pp. 1–19, Sep./Oct. 2020, doi: 10.1002/wene.376.

A. Eras-Almeida et al., “Decarbonizing the Galapagos Islands: Techno-economic perspectives for the hybrid renewable mini-grid Baltra–Santa Cruz,” Sustainability, vol. 12, no. 6, pp. 1–47, Mar. 2020, doi: 10.3390/su12062282.

T. Woo et al., “Three energy self-sufficient networks of wastewater treatment plants developed by nonlinear bi-level optimization models in Jeju Island,” J. Clean. Prod., vol. 379, pp. 1–17, Dec. 2022, doi: 10.1016/j.jclepro.2022.134465.

Firdaus, O. Penangsang, R.S. Wibowo, and Umar, “Alokasi optimal DG sumber energi terbarukan menggunakan algoritme multi-verse optimizer,” J. Nas. Tek. Elekt. Teknol. Inf., vol. 10, no. 3, pp. 291–299, Aug. 2021, doi: 10.22146/jnteti.v10i3.1462.

G. Ren et al., “Overview of wind power intermittency: Impacts, measurements, and mitigation solutions,” Appl. Energy, vol. 204, pp. 47–65, Oct. 2017, doi: 10.1016/j.apenergy.2017.06.098.

T.R. Ayodele and A.S.O. Ogunjuyigbe, “Mitigation of wind power intermittency: Storage technology approach,” Renew. Sustain. Energy Rev., vol. 44, pp. 447–456, Apr. 2015, doi: 10.1016/j.rser.2014.12.034.

M.Y. Suberu, M.W. Mustafa, and N. Bashir, “Energy storage systems for renewable energy power sector integration and mitigation of intermittency,” Renew. Sustain. Energy Rev., vol. 35, pp. 499–514, Jul. 2014, doi: 10.1016/j.rser.2014.04.009.

D.D. Artakusuma, F.D. Wijaya, and E. Firmansyah, “Aplikasi magnetic energy recovery switch sebagai dynamic voltage restorer pada motor induksi,” J. Nas. Tek. Elekt. Teknol. Inf., vol. 7, no. 2, pp. 236–240, May 2018.

J. Matevosyan, T. Ackermann, and S. Bolik, “Technical regulations for the interconnection of wind farms to the power system,” in Wind Power in Power Systems, West Sussex, England: John Wiley & Sons, 2005, ch. 7, pp. 115–142.

I. Caglayan et al., “Analysis of wind energy potential; A case study of Kocaeli University campus,” Fuel, vol. 253, pp. 1333–1341, Oct. 2019, doi: 10.1016/j.fuel.2019.05.123.

Z.H. Hulio, W. Jiang, and S. Rehman, “Technical and economic assessment of wind power potential of Nooriabad, Pakistan,” Energy Sustain. Soc., vol. 7, pp. 1–14, Nov. 2017, doi: 10.1186/s13705-017-0137-9.

B.R. Karthikeya, P.S. Negi, and N. Srikanth, “Wind resource assessment for urban renewable energy application in Singapore,” Renew. Energy, vol. 87, pp. 403–414, Mar. 2016, doi: 10.1016/j.renene.2015.10.010.

Z. Saberi, A. Fudholi, and K. Sopian, “Potential evaluation of wind energy in Kuala Terengganu, Malaysia through Weibull distribution method,” in Int. Conf. Sustain. Energy Green Technol., 2019, pp. 1–7, doi: 10.1088/1755-1315/268/1/012074.

Y. Gao et al., “Assessing the wind energy potential of China in considering its variability/intermittency,” Energy Convers. Manag., vol. 226, pp. 1–13, Dec. 2020, doi: 10.1016/j.enconman.2020.113580.

C. İlkiliç, “Wind energy and assessment of wind energy potential in Turkey,” Renew. Sustain. Energy Rev., vol. 16, no. 2, pp. 1165–1173, Feb. 2012, doi: 10.1016/j.rser.2011.11.021.

M. Gao et al., “Secular decrease of wind power potential in India associated with warming in the Indian Ocean,” Sci. Adv., vol. 4, no. 12, pp. 1–8, Dec. 2018, doi: 10.1126/sciadv.aat5256.

S. Ali, S.-M. Lee, and C.-M. Jang, “Techno-economic assessment of wind energy potential at three locations in South Korea using long-term measured wind data,” Energies, vol. 10, no. 9, pp. 1–24, Sep. 2017, doi: 10.3390/en10091442.

H. Mohamadi et al., “Assessment of wind energy potential and economic evaluation of four wind turbine models for the east of Iran,” Heliyon, vol. 7, no. 6, pp. 1–10, Jun. 2021, doi: 10.1016/j.heliyon.2021.e07234.

A. Musyafa, I.M.Y. Negara, and I. Robandi, “Wind-electric power potential assessment for three locations in East Java-Indonesia,” IPTEK, J. Technol. Sci., vol. 22, no. 3, Aug. 2011, doi: 10.12962/j20882033.v22i3.71.

N.W. Hesty et al., “Estimasi potensi energi angin Indonesia menggunakan model weather research and forecast-four dimension data assimiliation (WRF-FDDA),” J. Sains Dirgant., vol. 19, no. 2, pp. 11–20, Jul.–Dec 2022, doi: 10.30536/j.jsd.2022.v19.a3614.

I. Abdullah, J. Nurdin, and Hasanuddin, “Kajian potensi energi angin di daerah kawasan pesisir Pantai Serdang Bedagai untuk menghasilkan energi listrik,” Mekanik, vol. 2, no. 1, pp. 31–38, May 2016.

Z.H. Hulio, “Assessment of wind characteristics and wind power potential of Gharo, Pakistan,” J. Renew. Energy, vol. 2021, no. 1, pp. 1–17, Feb. 2021, doi: 10.1155/2021/8960190.

M. Aslam, “Testing average wind speed using sampling plan for Weibull distribution under indeterminacy,” Sci. Rep., vol. 11, pp. 1–9 Apr. 2021, doi: 10.1038/s41598-021-87136-8.

Q. Han and F. Chu, “Directional wind energy assessment of China based on nonparametric copula models,” Renew. Energy, vol. 164, pp. 1334–1349, Feb. 2021, doi: 10.1016/j.renene.2020.10.149.

Q. Hu et al., “On estimating uncertainty of wind energy with mixture of distributions,” Energy, vol. 112, pp. 935–962, Oct. 2016, doi: 10.1016/j.energy.2016.06.112.

I. Ifanda et al., “Optimizing turbine siting and wind farm layout in Indonesia,” Int. J. Renew. Energy Res. (IJRER), vol. 13, no. 3, pp. 1351–1363, Sep. 2023, doi: 10.20508/ijrer.v13i3.14070.g8806.

N.W. Hesty, D.G. Cendrawati, R. Nepal, and M.I.A. Irsyad, “Wind energy potential assessment based-on WRF four-dimensional data assimilation system and cross-calibrated multi-platform dataset,” in 4th Int. Conf. Renew. Energy Environ. Eng., 2021, pp. 1–7, doi: 10.1088/1755-1315/897/1/012004.

M. Bassyouni et al., “Assessment and analysis of wind power resource using Weibull parameters,” Energy Explor. Exploit., vol. 33, no. 1, pp. 105–122, Feb. 2015, doi: 10.1260/0144-5987.33.1.105.

D. Mohammed, A.S.M. Abdelaziz, E. Mohammed, and E. Elmostapha, “Analysis of wind speed data and wind energy potential using Weibull distribution in Zagora, Morocco,” Int. J. Renew. Energy Dev., vol. 8, no. 3, pp. 267–273, Oct. 2019, doi: 10.14710/ijred.8.3.267-273.

C. Diyoke, “A new approximate capacity factor method for matching wind turbines to a site: Case study of Humber region, UK,” Int. J. Energy Environ. Eng., vol. 10, no. 4, pp. 451–462, Dec. 2019, doi: 10.1007/s40095-019-00320-5.

K. Sharma and M.R. Ahmed, “Wind energy resource assessment for the Fiji Islands: Kadavu Island and Suva Peninsula,” Renew. Energy, vol. 89, pp. 168–180, Apr. 2016, doi: 10.1016/j.renene.2015.12.014.

A. Mostafaeipour et al., “Evaluation of wind energy potential as a power generation source for electricity production in Binalood, Iran,” Renew. Energy, vol. 52, pp. 222–229, Apr. 2013, doi: 10.1016/j.renene.2012.10.030.

N. Firdaus et al., “Wind energy potential on a highrise building: A preliminary study,” J. Adv. Res. Fluid Mech. Therm. Sci., vol. 88, no. 3, pp. 20–30, Dec. 2021, doi: 10.37934/arfmts.88.3.2030.

J. Olalo et al., “Determination of a potential for the installation of small-scale wind turbine in Barangay Bagasbas, Daet Camarines Norte, Philippines,” ASEAN Eng. J., vol. 12, no. 1, pp. 17–26, Mar. 2022, doi: 10.11113/aej.v12.16503.

R. Ghani et al., “Wind energy at remote islands in Arctic region—A case study of Solovetsky islands,” J. Renew. Sustain. Energy, vol. 11, no. 5, pp. 1–14, Sep. 2019, doi: 10.1063/1.5110756.

Philippine Atmospheric, Geophysical and Astronomical Services Administration (PAGASA), “Annual Report on Philippine Tropical Cyclones 2019,” 2021. [Online]. Available: https://pubfiles.pagasa.dost.gov.ph/pagasaweb/files/tamss/weather/tcsummary/PAGASA_ARTC_2019.pdf

Published
2024-11-28
How to Cite
Dwi Risdianto, Nurry Widya Hesty, Toha Zaky, Rudi Purwo Wijayanto, Agustina Putri Mayasari, & Ario Witjakso. (2024). Small-Scale Wind Turbine Selection Based on Wind Energy Potential Analysis Using Windographer. Jurnal Nasional Teknik Elektro Dan Teknologi Informasi, 13(4), 290-296. https://doi.org/10.22146/jnteti.v13i4.8753
Section
Articles