MPPT Using Particle Swarm Optimization and Artificial Bee Colony Algorithm

  • Ermanu Azizul Hakim Universitas Muhammadiyah Malang
  • Tamadar Al Ghufran Universitas Muhammadiyah Malang
  • Machmud Effendy Universitas Muhammadiyah Malang
  • Novendra Setyawan Universitas Muhammadiyah Malang
Keywords: Solar Cell, Maximum Power Point Tracking, Particle Swarm Optimization, Artificial Bee Colony, Boost Converter

Abstract

Solar power plant is a renewable electricity generator that utilizes heat from sunlight. However, because the intensity of light received by the solar cell and the temperature in the solar cell is always changing, the power generated is not optimal. To optimize the output power of the solar cell, a Maxi-mum Power Point Tracking (MPPT) system is needed. Solar cells can be optimized by looking for MPPT and also by using a DC-DC converter. In this study, boost converter is optimized using Particle Swarm Optimization (PSO) and Artificial Bee Colony (ABC) algorithms. The results show that the highest efficiency obtained from boost converter is 78.25%,using duty cycle of 20%. For the overall system testing conducted at 09:00 WIB until 11:10 WIB, the average power obtained without using MPPT is 12.55 W, the average power of MPPT system using boost converter with PSO algorithm is 16.79 W, and average power of MPPT system using boost converter with ABC algorithm is 14.52 W. From the results, it was concluded that the output power of MPPT system using boost converter with PSO algorithm is more optimal than the MPPT system using boost converter with ABC algorithm.

References

A. Faizal dan B. Setyaji, “Desain Maximum Power Point Tracking (MPPT) pada Panel Surys Menggunakan Metode Sliding Mode Control,” J. Sains, Teknol. dan Ind., Vol. 14, No. 1, hal. 22-31, 2016.

F.A. Samman dan A.A. Rahmansyah, “Simulasi Pengujian Kinerja Algoritma Pencarian Titik Daya Maximum,” Prosiding SNTEK 2017, 2017, hal. 43-47.

D.C. Bani, “MPPT pada Sistem PV Menggunakan Algoritma Firefly dan Modified P&O dengan Konverter Hybrid Cuk Terkoneksi ke Grid Satu Phasa di Bawah Kondisi Partial Shaded.” J. Tek. ITS, Vol. 5, No. 2, hal. B128-B134, 2016.

T.A. Zulhelmi, “Analisis Perbandingan Metode Incremental Conductance dan Perturb and Observe sebagai Algoritma MPPT pada Sistem Photovoltaic,” Skripsi, Universitas Sumatra Utara, Medan, Indonesia, 2017.

S.N. Singh, “Selection of Non-isolated DC-DC Converters for Solar Photovoltaic System,” Renew. Sustain. Energy Rev., Vol. 76, hal. 1230–1247, 2017.

N. Setyawan, E.A. Hakim, dan Z. Zulfatman, “Signature PSO: Modified Particle Swarm Optimization dengan Fuzzy Signature dan Implementasi pada Optimalisasi Kendali LQR,” J.MULTITEK Indonesia., Vol. 13, No. 2, hal. 29–38, 2020.

N. Setyawan, R. Effendi, dan A. Jazidie, “Adaptive Gaussian Parameter Particle Swarm Optimization and Its Implementation in Mobile Robot Path Planning,” Proc. ISITIA 2017, 2017, hal. 238–243.

N. Setyawan, N. Mardiyah, K. Hidayat, dan Z. Has, “Object Detection of Omnidirectional Vision Using PSO-Neural Network for Soccer Robot,” Proc. 2018 5th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI), 2018, hal. 117–121.

A. Rosita, Y. Purwananto, dan R. Soelaiman, “Implementasi Algoritma Particle Swarm untuk Menyelesaikan Sistem Persamaan Nonlinear,” J. Tek. ITS, Vol. 1, No. 1, hal. A211–A218, 2012.

P.T. Sawant, P.C. Lbhattar, dan C.L. Bhattar, “Enhancement Of PV System Based on Artificial Bee Colony Algorithm Under Dynamic Conditions,” Proc. 2016 IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT), 2016, hal. 1251–1255.

S. Hassan, B. Abdelmajid, Z. Mourad, S. Aicha, dan B. Abdenaceur, “An Advanced MPPT Based on Artificial Bee Colony Algorithm for MPPT Photovoltaic System under Partial Shading Condition,” Int. J. Power Electron. Drive Syst., Vol. 8, No. 2, hal. 647, 2017.

Published
2020-05-29
How to Cite
Hakim, E. A., Al Ghufran, T., Effendy, M., & Setyawan, N. (2020). MPPT Using Particle Swarm Optimization and Artificial Bee Colony Algorithm . Jurnal Nasional Teknik Elektro Dan Teknologi Informasi, 9(2), 218-224. https://doi.org/10.22146/jnteti.v9i2.81
Section
Articles