Pattern Recognition for AGV’s Position Detection Based on Raspberry Pi

  • Florentinus Budi Setiawan Universitas Katolik Soegijapranata
  • Franciska Amalia Kurnianingsih Universitas Katolik Soegijapranata
  • Slamet Riyadi Universitas Katolik Soegijapranata
  • Leonardus Heru Pratomo Universitas Katolik Soegijapranata
Keywords: Otomatisasi, Robotika, AGV, Pattern Recognition, Kamera, Titik Koordinat

Abstract

The development of technology in automation and robotics is overgrowing because of its high-efficiency level in terms of labor and time. In the warehousing system, one of the robots used is Automated Guided Vehicle (AGV). AGV is a transportation device in the form of a robot that can be controlled automatically, which functions as a carrier of goods using a navigation system to move in a predetermined direction. One of the existing AGV navigation systems is by following a line pattern on the floor. The system is inefficient because, gradually, the line pattern will wear out and can not be detected again due to the friction force of the AGV wheels itself. Therefore, it is necessary to develop an AGV navigation system to minimize these obstacles. This pattern recognition system uses a pattern placed on the building ceiling and camera as a sensor facing upwards, so that AGV can freely detect patterns. Then, the detected pattern was processed through a programmed Raspberry Pi 4 Model B. The test results show that this system can detect the position and successfully displays the coordinate point (x, y) of the AGV and will continue to run at any time until the program is changed as ordered.

References

R. Szeliski, Computer Vision : Algorithms and Applications, London, UK: Springer-Verlag London, 2010.

M. Rafika, A. Rakhman, dan J. Endri, “Rancang dan Implementasi Pattern Recognition pada Garis Telapak Tangan untuk Akses Keamanan Pintu,” Proc. SNATIF Ke-4, 2017, hal. 413–418.

K. Umam dan B.S. Negara, “Deteksi Obyek Manusia pada Basis Data Video Menggunakan Metode Background Subtraction dan Operasi Morfologi,” Jurnal CoreIT, Vol. 2, No. 2, hal. 31-40, 2016.

(2020) “Datasheet Raspberry Pi 3 Model B Technical Specification,” [Online], http://www.farnell.com/datasheets/2027912.pdf, tanggal akses: 16-Jun-2020.

A. Eames, The Official Raspberry Pi Projects Book, London, UK: Liz Upton, 2015.

X. Zhou, T. Chen, dan Y. Zhang, “Research on Intelligent AGV Control System,” Proc. 2018 Chinese Autom. Congr. CAC 2018, 2019, hal. 58–61.

(2020) “Datasheet Raspberry Pi 4 Model B”, [Online] http://www.farnell.com/datasheets/2819352.pdf, tanggal akses: 16-Jun-2020.

G. Arva dan T. Fryza, “Embedded Video Processing on Raspberry Pi”, Int. Conf. Radioelektronika, 2017, hal. 4–7.

(2020) "The Open CV Tutorials Point," [Online] https://www.tutorialspoint.com/opencv/opencvtutorial.pdf, tanggal akses: 16-Jun-2020.

M. Yang dan N. Ahuja, “Extraction and Classification of Visual Motion Patterns for Hand Gesture Recognition,” Proc. Computer Society Conference on Computer Vision and Pattern Recognition, 1998, hal. 1-6.

Gaohe Li, Xinhao Li, dan Bo Xu, “Numerical Simulation Technology Study on Automatic Translation of Foreign Language Images Based on Tesseract-ORC,” Int. Conf. on Robots & Intelligent System (ICRIS), 2019, hal. 86-89.

G. Marne, R. Futane, B. Kolekar, D. Lakhadive, dan K. Marathe, “Identification of Optimal Optical Character Recognition (OCR) Engine for Proposed System,” Int. Conf. on Computing Communication Control and Automation (ICCUBEA), 2018, hal. 1-4.

Published
2021-02-25
How to Cite
Florentinus Budi Setiawan, Kurnianingsih, F. A., Slamet Riyadi, & Leonardus Heru Pratomo. (2021). Pattern Recognition for AGV’s Position Detection Based on Raspberry Pi. Jurnal Nasional Teknik Elektro Dan Teknologi Informasi, 10(1), 49-56. https://doi.org/10.22146/jnteti.v10i1.738
Section
Articles