Influence of Input Voltage Variation on the Energy Efficiency of Induction Cookers
Abstract
Efficiency in energy use is essential for achieving national energy security. Dependence on energy supplies with high levels of imports can make a nation to be more susceptible to crises and dependence. It also includes the provision of energy sources for cooking needs. An electric induction cooker is one of the alternatives to the liquified petroleum gas (LPG) gas stove used for cooking. Given the high government import subsidy for LPG procurement, diversification of energy sources for cooking needs to be done. Cooking with an induction cooker is more efficient than cooking with a gas stove because it requires a shorter cooking time, and less heat energy is wasted. The energy efficiency of induction cookers ranges is approximately 80% or twice that of gas cookers ranges, which is at 40%. Nonetheless, the level of energy efficiency of induction cookers can be affected by the electricity supply voltage. Electricity conditions in Indonesia with a voltage service quality level of 220 V ± 10% result in the energy efficiency of induction cookers varying. This study analyzes the effect of input voltage variations on the energy efficiency of induction cookers. The input voltage was varied from 230 V to 200 V with a difference of 10 V using four brands of induction cookers. The test results indicate that the efficiency is directly proportional to the input voltage, where the higher the input voltage will provide the greater the induction cooker’s energy efficiency.
References
”Ketahanan Energi Indonesia,” Sekretariat Jendral Dewan Energi Nasional, Jakarta, 2019.
“Statistik Minyak dan Gas Bumi Semester 1 2021,” Direktorat Jenderal Minyak dan Gas Bumi Kementerian Energi dan Sumber Daya Mineral, Jakarta, 2021.
“Konversi LPG ke Kompor Induksi, Subsidi Energi Jadi Lebih Tepat Sasaran,” PT PLN (Persero), Press Release No. 639.PR/STH.00.01/I/2021, Jakarta, 2021.
”Outlook Energy Indonesia,” Sekretariat Jendral Dewan Energi Nasional, Jakarta, 2019.
“Rencana Usaha Penyediaan Tenaga Listrik PT Perusahaan Listrik Negara (Persero) Tahun 2021 hingga Tahun 2030,” Kementerian Energi dan Sumber Daya Mineral, Jakarta, 2021.
International Energy Agency, “World Energy Outlook 2022,” International Energy Agency (IEA), Paris, 2022.
S. Azzahra, H. Azis, M. Sitorus, and P. Pawenary, “Uji Performa Kompor Induksi dan Kompor Gas terhadap Pemakaian Energi dan Aspek Ekonomisnya,” Energi, Kelistrikan: J. Ilm., Vol 12, No. 2, pp. 149–155, Dec. 2020, doi: 10.33322/energi.v12i2.1009.
Ó. Lucía et al., “Induction Heating Cookers: A Path Towards Decarbonization Using Energy Saving Cookers,” 2022 Int. Power Electron. Conf. (IPEC-Himeji 2022-ECCE Asia), 2022, pp. 1435–1439, doi: 10.23919/IPEC-Himeji2022-ECCE53331.2022.9807062.
W.D. Kerr, D.M. Laverty, and R.J. Best, “Assessment of the Potential of Electrical Heating to Provide Decarbonization,” 2016 51st Int. Univ. Power Eng. Conf. (UPEC), 2016, pp. 1–6, doi: 10.1109/UPEC.2016.8114084.
F. Husnayain, A. Budiyanto, F.H. Jufri, and I.M. Ardita, “Technical Study of Modified Genset Using Natural Gas with Different Inlet Pressure,” J. Nas. Tek. Elekt., Teknol. Inf., Vol. 9, No. 3, pp. 319–325, Aug. 2020, doi: 10.22146/.v9i3.393.
M. Ozturk, S. Aslan, N. Altintas, and S. Sinirlioglu, “Comparison of Induction Cooker Power Converters,” 2018 6th Int. Conf. Control Eng., Inf. Technol. (CEIT), 2018, pp. 1–6, doi: 10.1109/CEIT.2018.8751920.
O. Lucía, P. Maussion, E. J. Dede, and J.M. Burdío, “Induction Heating Technology and Its Applications: Past Developments Current Technology and Future Challenges,” IEEE Trans. Ind. Electron., Vol. 61, No. 5, pp. 2509–2520, May 2014, doi: 10.1109/TIE.2013.2281162.
T. Kimmer, J. Oehmen, P. Tuerkes, and S. Voss, “Reverse Conducting IGBT - A New Technology to Increase the Energy Efficiency of Induction Cookers,” 2008 IEEE Power Electron. Spec. Conf., 2008, pp. 2284–2287, doi: 10.1109/PESC.2008.4592281.
H. Sarnago, O. Lucia, and J. M. Burdio, “A Comparative Evaluation of SiC Power Devices for High Performance Domestic Induction Heating,” IEEE Trans. Ind. Electron., Vol. 62, No. 8, pp. 4795–4804, Aug. 2015, doi: 10.1109/TIE.2015.2405057.
C.C. Lee and L.L. Hon, “Critical Study on the Relationship between Power Conversion Technique and Energy Efficiency on Induction Cooker,” 2017 IEEE Int. Symp. Prod. Saf., Compliance Eng. - Taiwan (ISPCE-TW), 2017, pp. 1–2, doi: 10.1109/ISPCE-TW.2017.8626823.
Y. Kawaguchi et al., “A Comparison of Operation Mode for Soft-Switching PFC Converter for Induction Heating Cooking Appliance,” 2009 35th Annu. Conf. IEEE Ind. Electron., 2009, pp. 13–18, doi: 10.1109/IECON.2009.5414802.
N.G. Özçelik, U.E. Doğru, and L.T. Ergene, “Comparison Study of Drive Motors for Cooker Hood Applications,” 2014 16th Int. Power Electro., Motion Control Conf., Expo., 2014, pp. 1252–1258, doi: 10.1109/EPEPEMC.2014.6980684.
Z. Li et al., “A Mutual-Inductance-Based Impedance Model of Induction Cooker for Efficiency Improvement,” 2019 22nd Int. Conf. Electr. Machines, Syst. (ICEMS), 2019, pp. 1–5, doi: 10.1109/ICEMS.2019.8922301.
J.-K. Kim, S.-G. Kim, W.-H. Oh, and S.-M. Park, “Modeling and Analysis of Power Device Losses for Induction Cooker Applications,” 2018 21st Int. Conf. Elect. Machines, Syst. (ICEMS), 2018, pp. 780–783, doi: 10.23919/ICEMS.2018.8549433.
R.P. Wojda and M.K. Kazimierczuk, “Analytical Optimization of Solid–Round-Wire Windings,” IEEE Trans. Ind. Electron., Vol. 60, No. 3, pp. 1033–1041, Mar. 2013, doi: 10.1109/TIE.2012.2189543.
K.K. Wong and N.K. Fong, “Experimental Study of Induction Cooker Fire Hazard,” Procedia Eng., Vol. 52, 2013, pp. 13–22, 2013, doi: 10.1016/j.proeng.2013.02.098.
M. Humza and B. Kim, “Analysis and Optimal Design of Induction Heating Cookers,” J. Elect. Eng., Technol., Vol. 11, No. 5, pp. 1282–1288, Sep. 2016, doi: 10.5370/JEET.2016.11.5.1282.
B. Sudiarto, “The Properties and Behavior of Disturbances in the Frequency Range 9 kHz to 150 kHz Produced by Household Appliances in a Residential Network Environment,” Dissertation, University of Duisburg-Essen, Essen, Germany, 2017.
F. Husnayain, F. Tamim, and B. Sudiarto, “Disturbance Characteristics of Induction Cooker on a Grid-Connected Photovoltaic System in Frequency Range of 9-150 kHz,” J. Nas. Tek. Elekt., Vol. 9, No. 2, pp. 116–123, Jul. 2020, doi: 10.25077/jnte.v9n2.762.2020.
B. Sudiarto, F. Faizal, F. Husnayain, and H. Hirsch, “Disturbance Profiles of Household Appliances on Photovoltaic System in Frequency Range of 9-150 kHz,” Int. Review Electr. Eng. (IREE), Vol. 16, No. 5, pp. 428–436, 2021, doi: 10.15866/iree.v16i5.20275.
S.M. Wentworth, Fundamentals of Electromagnetics with Engineering Applications, 1st ed. Hoboken, USA: Wiley, 2006.
© Jurnal Nasional Teknik Elektro dan Teknologi Informasi, under the terms of the Creative Commons Attribution-ShareAlike 4.0 International License.