Studi Penerapan Power Wheeling Pembangkit Fotovoltaik Dengan Metode MW-km
Abstrak
Upaya dalam mengurangi emisi karbon pada sektor ketenagalistrikan adalah dengan menerapkan pembangkit energi terbarukan yang lebih ramah lingkungan. Pembangkit fotovoltaik (photovoltaic, PV) sebagai pembangkit terdistribusi (distributed generator, DG) merupakan salah satu pembangkit dari energi terbarukan yang menjadi tren saat ini. DG merupakan pembangkit yang letaknya dekat dengan beban pada jaringan distribusi. Dalam penerapannya, PV DG akan memengaruhi besar rugi daya pada jaringan listrik yang sudah ada (existing), sehingga juga memengaruhi besar biaya rugi energi. Selain itu, ketersediaan lahan yang memadai juga diperlukan dalam pemasangan PV DG. Hal ini menyebabkan kerja sama antara pelaku usaha penyedia tenaga listrik PV DG dengan partner beban dilakukan secara berjauhan, sehingga menimbulkan masalah penyaluran. Pembangunan saluran distribusi oleh pelaku usaha untuk evakuasi produksi listriknya hampir tidak mungkin dilakukan. Sewa jaringan distribusi menjadi solusi yang menarik, yaitu melalui skema pemanfaatan bersama jaringan distribusi atau power wheeling. Penelitian ini bertujuan untuk melakukan studi penerapan power wheeling pembangkit PV pada sistem jaringan distribusi IEEE 33 bus, dengan mencari lokasi bus penempatan pembangkit wheeling PV yang menghasilkan total biaya rugi energi dan biaya sewa jaringan distribusi terkecil. Metode MW-km digunakan untuk perhitungan biaya sewa jaringan. Ketersediaan lahan tiap bus juga dipertimbangkan dalam penelitian ini. Hasil penelitian menunjukkan bahwa penempatan pembangkit wheeling PV di bus 8 menghasilkan biaya total rugi energi dan biaya sewa jaringan distribusi terkecil selama setahun. Hal tersebut menunjukkan bahwa penempatan pembangkit wheeling PV di sembarang tempat belum tentu menghasilkan total biaya rugi energi dan biaya sewa jaringan distribusi terkecil.
Referensi
M. Ahsan, “Tantangan dan peluang pembangunan proyek pembangkit listrik energi baru terbarukan (EBT) di Indonesia,” J. Ilm. Sutet, vol. 11, no. 2, pp. 81–93, Dec. 2021, doi: 10.33322/sutet.v11i2.1575.
“Rencana Usaha Penyediaan Tenaga Listrik (RUPTL) PT Perusahaan Listrik Negara (Persero) Tahun 2021 Sampai Dengan Tahun 2030,” The Minister of Energy and Mineral Resources of the Republic of Indonesia, 2021.
L. Mehigan, J.P. Deanae, B.P.O. Gallachoir, and V. Bertsch, “A review of the role of distributed generation (DG) in future electricity systems,” Energy, vol. 163, pp. 822–836, Nov. 2018, doi: 10.1016/j.energy.2018.08.022.
R. Fatchurrahman and A.B. Zakaria, “Study of determining cost compensation of power wheeling transaction on composite system reliability by optimal power flow,” 2019 Int. Conf. Technol., Policies Elect. Power Energy, 2019, pp. 1–6, doi: 10.1109/IEEECONF48524.2019.9102562.
Y.S. Wijoyo, S.P. Hadi, and Sarjiya, “Review perhitungan biaya wheeling,” J. Nas. Tek. Elekt. Teknol. Inf., vol. 9, no. 1, pp. 116–122, Feb. 2020, doi: 10.22146/jnteti.v9i1.114.
“Pelaksanaan Usaha Ketenagalistrikan,” The Regulation of the Minister of Energy and Mineral Resources of the Republic of Indonesia, No. 11, 2021.
A.B. Abdullahi, L. Olatomiwa, J. Tsado, and A.A. Sadiq, “Impact assessment of wheeling renewable distributed generation to residential load,” Int. Conf. Elect. Comput., Energy Technol. (ICECET), 2021, pp. 1–6, doi: 10.1109/ICECET52533.2021.9698780.
W. Murray and M. Adonis, “Efficacy of energy wheeling to endorse renewable energy generation,” AIUE Proc. 17th Ind. Commer. Use Energy (ICUE) Conf. 2019, 2019, pp. 1–8, doi: 10.2139/ssrn.3658901.
B. Li, D.A. Robinson, and A. Agalgaonkar, “Identifying the wheeling costs associated with solar sharing in lv distribution networks in Australia using power flow tracing and MW-mile methodology,” 2017 Australas. Univ. Power Eng. Conf. (AUPEC), 2017, pp. 1–6, doi: 10.1109/AUPEC.2017.8282392.
Hermawan and T. Andromeda, “Comparison of cost estimation methods in power wheeling for Java-Bali interconnection system,” 2017 4th Int. Conf. Inf. Technol. Comput. Elect. Eng. (ICITACEE), 2017, pp. 127–130, doi: 10.1109/ICITACEE.2017.8257689.
S. Larbwisuthisaroj and S. Chaitusaney, “Wheeling charge considering line flow differentiation based on power flow calculation,” 2018 15th Int. Conf. Elect. Eng./Electron. Comput. Telecommun. Inf. Technol. (ECTI-CON), 2018, pp. 293–296, doi: 10.1109/ECTICon.2018.8619951.
S. Ghasemi and J. Moshtagh, “Radial distribution systems reconfiguration considering power losses cost and damage cost due to power supply interruption of consumers,” Int. J. Elect. Eng., Inform., vol. 5, no. 3, pp. 297–315, Sep. 2013, doi: 10.15676/ijeei.2013.5.3.5.
A. Wazir and N. Arbab, “Analysis and optimization of IEEE 33 bus radial distributed system using optimization algorithm,” J. Emerg. Trends Appl. Eng., vol. 1, no. 2, pp. 17–21, 2016.
K. Huang, Z. Li, W. Tang, and T. Qian, “Voltage assessment of high PV penetration in radial power distribution network,” 2021 Int. Conf. New Energy Res. Appl., 2021, pp. 1–7, doi: 10.1088/1755-1315/838/1/012009.
T. Ackermann, G. Andersson, and L. Söder, “Distributed generation: A definition,” Elect. Power Syst. Res., vol. 57, no. 3, pp. 195–204, Apr. 2001, doi: 10.1016/S0378-7796(01)00101-8.
O. Ayan, N. Jafarzadeh, and B. Turkay, “An examination of the effects of distributed generation on distribution systems by load flow analysis,” 2018 20th Int. Symp. Elect. App. Technol. (SIELA), 2018, pp. 1–6, doi: 10.1109/SIELA.2018.8447117.
D.Q. Hung, N. Mithulananthan, and R.C. Bansal, “Analytical expressions for DG allocation in primary distribution networks,” IEEE Trans. Energy Convers., vol. 25, no. 3, pp. 814–820, Sep. 2010, doi: 10.1109/TEC.2010.2044414.
M. Purlu and B.E. Turkay, “Optimal allocation of renewable distributed generations using heuristic methods to minimize annual energy losses and voltage deviation index,” IEEE Access, vol. 10, pp. 21455–21474, Feb. 2022, doi: 10.1109/ACCESS.2022.3153042.
S. Jiang et al., “Distributed photovoltaic generation in the electricity market: Status, mode and strategy,” CSEE J. Power Energy Syst., vol. 4, no. 3, pp. 263–272, Sep. 2018, doi: 10.17775/cseejpes.2018.00600.
J. Armas and A. Ivanov, “Determination of the total cost of active power losses and methods to reduce power losses in low-voltage distribution networks,” 2019 IEEE 60th Int. Sci. Conf. Power Elect. Eng. Riga Tech. Univ. (RTUCON), 2019, pp. 1–6, doi: 10.1109/RTUCON48111.2019.8982319.
M. Rosyada, H. Hermawan, and S. Handoko, “Perhitungan biaya sewa jaringan transmisi 500 kV Jawa-Bali dengan metode MW-Mile,” Transient J. Ilm. Tek. Elekt., vol. 3, no. 4, pp. 642–649, Dec. 2014, doi: 10.14710/transient.v3i4.642-649.
B. Kharbas, M. Fozdar, and H. Tiwari, “Comparative assessment of MW-Mile and MVA-Mile methods of transmission tariff allocation and revenue reconciliation,” 2013 IEEE Power Energy Soc. Gen. Meet., 2013, pp. 1–5, doi: 10.1109/PESMG.2013.6672407.
“PLN Statistics 2017,” PT PLN (Persero), 2018.
M. Sheikhan and N. Mohammadi, “Time series prediction using PSO-optimized neural network and hybrid feature selection algorithm for IEEE load data,” Neural Comput. Appl., vol. 23, no. 3–4, pp. 1185–1194, Sep. 2013, doi: 10.1007/s00521-012-0980-8.
A. Jahid, M.K.H. Monju, M.S. Hossain, and M.F. Hossain, “Hybrid power supply solutions for off-grid green wireless networks,” Int. J. Green Energy, vol. 16, no. 1, pp. 12–33, 2019, doi: 10.1080/15435075.2018.1529593.
© Jurnal Nasional Teknik Elektro dan Teknologi Informasi, di bawah Lisensi Creative Commons Atribusi-BerbagiSerupa 4.0 Internasional.