Phoneme Classification Optimization Using Backpropagation Neural Network and Principal Component Analysis
Abstract
A phoneme is the smallest sound in a sentence that has no meaning but plays the most important role in meaning formation. Phoneme identification from a video that shows an actor speaking Indonesian sentences is an important part of developing visual-to-text applications. This application can translate mouth movements from a video into a series of Indonesian texts so that it can facilitate communication for the deaf. This study aims to optimize the performance of the classification process on image data, including as many as 32 phonemes from video extraction results so that they can be used to support the phoneme identification process to realize visual-to-text applications in Indonesian. The classification algorithm used in this study was neural network backpropagation. Some of the proposed efforts to optimize the performance of the classification process included using a comparison of the proportion of datasets, estimating the number of hidden layers, and reducing the dimensions of the dataset using the principal component analysis (PCA) method to reduce the amount of data that is considered less important without reducing the level of information. The dimensions of the data before reduction were 1280 × 7100 data matrices and 1280 × 50 data matrices after reduction. The accuracy results obtained in data optimization using the PCA were equal to 87.16% with a data proportion of 8 : 2 and fifty important data points were used in the data optimization process using the PCA.
References
U. Kulsum, “Masalah Bunyi dalam Bahasa Masyarakat Indonesia,” Caraka, Vol. 10, No. 1, pp. 299–302, Feb. 2021, doi: 10.1017/s1742058x13000143.
(2022) “KBBI Online,” [Online], http://kbbi.co.id/cari?kata=fonem, access date: 11-Jul-2022.
M. Khaleqyar and M. Qaseem Kashaf, “The Importance of Suprasegmental Features in the Structure and Meaning of Pashto Sentence,” Sprin J. Arts, Humanit. Soc. Sci., Vol. 1, No. 9, pp. 31–40, Sep. 2022, doi: 10.55559/sjahss.v1i09.54.
F. Nur, D.E. Aryanto, and N.I. Islami, “Analisis Segmentasi Silabel dan Fonem dalam Kalimat Perintah (Kajian Fonologi),” Ghâncaran: J. Pendidik. Bhs. dan Sastra Indones., Vol. 3, No. 1, pp. 16–38, 2021, doi: 10.19105/ghancaran.v3i1.4424.
N. Mamuriyah and J. Sumantri, “Penerapan Metode Convolution Neural Network (CNN) Pada Aplikasi Automatic Lip Reading,” J. Inform. Telecommun. Eng., Vol. 6, No. 1, pp. 276–287, Jul. 2022, doi: 10.31289/jite.v6i1.7523.
I.D. Id, Machine Learning: Teori, Studi Kasus dan Implementasi Menggunakan Python, 1st ed. Pekanbaru, Indonesia: UR PRESS, 2021, doi: 10.5281/zenodo.5113507.
B. Mahesh, “Machine Learning Algorithms - A Review,” Int. J. Sci., Res. (IJSR), Vol. 9, No. 1, pp. 381–386, Jan. 2020, doi: 10.21275/ART20203995.
A. Roihan, P.A. Sunarya, and A.S. Rafika, “Pemanfaatan Machine Learning dalam Berbagai Bidang: Review Paper,” IJCIT (Indonesian J. Comput. Inf. Technol.), Vol. 5, No. 1, pp. 75–82, 2020, doi: 10.31294/ijcit.v5i1.7951.
R.H. Abiyev and M.K.S. Ma’aitah, “Deep Convolutional Neural Networks for Chest Diseases Detection,” J. Healthc. Eng., Vol. 2018, pp. 1–11, Aug. 2018, doi: 10.1155/2018/4168538.
D. Aprilla C., D.A. Baskoro, L. Ambarwati, and I.W.S. Wicaksana, “Belajar Data Mining dengan RapidMiner,” in Belajar Data Mining dengan RapidMiner, R. Sanjaya, Ed. Jakarta, Indonesia: Gramedia Pustaka Utama, 2013, pp. 1–125.
O.D. Nurhayati, D. Eridani, and A. Ulinuha, “Ekstraksi Ciri Orde Pertama dan Metode Principal Component Analysis untuk Mengidentifikasi Jenis Telur Ayam Kampung dan Ayam Arab,” JSINBIS (J. Sist. Inf. Bisnis), Vol. 9, No. 2, pp. 133-140, Nov. 2019, doi: 10.21456/vol9iss2pp133-140.
T. Yulianti, M. Telaumbanua, H.D. Septama, and H. Fitriawan, “Pengaruh Seleksi Fitur Citra Terhadap Klasifikasi Tingkat Kesegaran Daging Sapi Lokal,” J. Tek. Pertan. Lampung, Vol. 10, No. 1, pp. 85–95, Mar. 2021, doi: http://dx.doi.org/10.23960/jtep-l.v10.i1.85-95.
A. Zamfiroiu, R. Boncea, and I. Petre, “Data Acquisition Process for Smart Systems,” Int. J. Res., Anal. Rev., Vol. 6, No. 2, pp. 553–556, Jun. 2019.
A. Riadi and R. Sulaehani, “Analisis Implementasi Preprocessing dengan Otsu-Gaussian pada Pengenalan Wajah,” ILKOM J. Ilm., Vol. 11, No. 3, pp. 200–205, Dec. 2019, doi: 10.33096/ilkom.v11i3.457.200-205.
Yuhandri, “Perbandingan Metode Cropping pada Sebuah Citra untuk Pengambilan Motif Tertentu pada Kain Songket Sumatera Barat,” J. KomtekInfo (Komput. Teknol. Inf.), Vol. 6, No. 1, pp. 96–105, Jun. 2019, doi: 10.35134/komtekinfo.v6i1.45.
M. Zen, “Perbandingan Metode Dimensi Fraktal dan Jaringan Syaraf Tiruan Backpropagation dalam Sistem Identifikasi Sidik Jari pada Citra Digital,” JiTEKH (Jurnal Ilm. Teknol. Harapan), Vol. 7, No. 2, pp. 42–50, Sep. 2019, doi: https://doi.org/10.35447/jitekh.v7i02.80.
M.A. Nasution et al., “Determinasi Nilai RGB dan Grayscale pada Citra Tandan Buah Segar (TBS Kelapa Sawit (Elaeis Guineensis Jacq.) Menggunakan Matlab,” J. Pen. Kelapa Sawit, Vol. 30, No. 1, pp. 37–48, Apr. 2022, doi: https://doi.org/10.22302/iopri.jur.jpks.v30i1.159.
H.A. Rabbani, M.A. Rahman, and B. Rahayudi, “Perbandingan Ruang Warna RGB dan HSV dalam Klasifikasi Kematangan Biji Kopi,” J. Pengemb. Teknol. Inf., Ilm. Komput., Vol. 5, No. 6, pp. 2243–2248, Jun. 2021.
Arifin, Muljono, S. Sumpeno, and M. Hariadi, “Towards Building Indonesian Viseme: A Clustering-Based Approach,” 2013 IEEE Int. Conf. Comput. Intell., Cybernetics (CYBERNETICSCOM), 2013, pp. 57–61, doi: 10.1109/CyberneticsCom.2013.6865781.
M.N.D. Sawitri, I.W. Sumarjaya, and N.K.T. Tastrawati, “Peramalan Menggunakan Metode Backpropagation Neural Network,” E-J. Mat., Vol. 7, No. 3, pp. 264–270, Sep. 2018, doi: 10.24843/mtk.2018.v07.i03.p213.
S.M. Damanik, et al., “Optimasi Data Menggunakan Teknik Backpropagation dalam Meningkatkan Hasil Nilai Akurasi,” Punyaku sementara Sem. Nas. Sains, Teknol. Inf. (SENSASI), 2021, pp. 657–662.
H. Okprana, M.R. Lubis, and J.T. Hadinata, “Prediksi Kelulusan TOEFL Menggunakan Metode Resilient Backpropagation,” J. Edukasi, Pen. Inform., Vol. 6, No. 2, pp. 275–279, Aug. 2020, doi: 10.26418/jp.v6i2.41224.
M.S. Aftab and F. Aftab, “A Study on Lyapunov Function Backpropagation Algorithm for Suitability as Neuro-Adaptive Inverse Controller,” 2018 IEEE 21st Int. Multi-Topic Conf. (INMIC), 2018, pp. 1–4, doi: 10.1109/INMIC.2018.8595664.
U. Nuha and N. Rochmawati, “Klasifikasi Kesahihan Hadits Berdasarkan Perawi Hadits Menggunakan Principal Component Analysis (PCA) dan Backpropagation Neural Network (BPNN),” J. Inform., Comput. Sci., Vol. 1, No. 3, pp. 138–143, Mar. 2020, doi: 10.26740/jinacs.v1n03.p138-143.
© Jurnal Nasional Teknik Elektro dan Teknologi Informasi, under the terms of the Creative Commons Attribution-ShareAlike 4.0 International License.