Design of Instrumentation and Control System Integration for the DECY-13 Cyclotrons Commissioning
Abstract
A cyclotron is a particle beam accelerator used for various applications, one of which is to produce medical radioisotopes. Research Center for Accelerator Technology, Research Organization for Nuclear Energy - National Research and Innovation Agency (Pusat Riset Teknologi Akselerator, Organisasi Riset Tenaga Nuklir - Badan Riset dan Inovasi Nasional, PRTA ORTN-BRIN) is conducting research and development (R&D) for the DECY-13 cyclotron that has reached the stage of testing its primary components. The primary components of the DECY-13 cyclotron consist of seven systems. In commissioning, it is necessary to prepare an integrated instrumentation and control system (ICS) design that unites the operation of all DECY-13 cyclotron’s primary components to produce a particle beam as desired. The integration process was carried out in two stages: determining operating procedures during commissioning and identifying operating parameters; and designing the ICS integration. The process of identifying parameters and determining operating procedures was carried out by studying test data and operating standards for each component to obtain important parameters in operation. Next, the ICS architecture was developed by integrating the operating system on the primary components using the distributed control system (DCS) method. The DCS configuration consisted of three layers, namely the operator, the main control, and the device layers. Communication between the device and the main control layers was carried out using the RS-232 serial communication, while the communication between the main control and the operator layers used the Ethernet. The RS-232 communication between the device and main control layers was used to manage data acquisition, data logging, and operation control. At the operator layer, there was a host-PC that functioned as a data viewer and data logging. This design is expected to be a guide in the implementation of ICS improvements, and realizing ease during commissioning.
References
Silakhuddin and I.A. Kudus, “Study of Development of the DECY-13 Cyclotron Based on Applied Physics Learning,” J. Korean Phys. Soc., Vol. 80, pp. 880-886, Mei 2022, doi: 10.1007/s40042-022-00434-w.
Saefurrochman, Saminto, and A. Susanto, “Analisis Perancangan Sistem Instrumentasi Perangkat Pengatur Posisi Sumber Ion DECY-13,” Pros. Pertem. Present. Ilm. Penelit. Dasar Ilmu Pengetah. Teknol. Nukl., 2018, pp. 369–376.
S. Silakhuddin et al., “Ion Beam Preliminary Testing of DECY-13 Cyclotron at the Central Region Using DC Extraction Voltage,” IOP Conf. Ser. Mater. Sci. Eng., Vol. 432, pp. 1-7, 2018, doi: 10.1088/1757-899X/432/1/012026.
F.S. Permana, A.D. Atmaja, and A. Wijayanto, “Perancangan Sistem Akuisisi and Kendali Generator RF Siklotron DECY-13,” Pros. Pertem. Present. Ilm. Penelit. Dasar Ilmu Pengetah. Teknol. Nukl., 2018, pp. 115–118.
F.S. Permana and Suharni, “Sistem Akuisisi Data Sumber Daya Magnet MPS 8500 and Karakterisasinya untuk Pengoperasian Siklotron DECY-13,” Pros. Pertem. Present. Ilm. Penelit. Dasar Ilmu Pengetah. Teknol. Nukl., 2018, pp. 197–202.
S. Saminto, F.S. Permana, A. Susanto, and E. Priyono, “Rancang Bangun Perangkat Instrumentasi Kendali pada Sistem Pendingin Siklotron DECY-13 MeV,” Pros. Pertem. Present. Ilm. Penelit. Dasar Ilmu Pengetah. Teknol. Nukl., 2017, pp. 167–176.
J. Galambos, “Commissioning Strategies and Methods,” CERN Accel. Sch.: High Power Hadron Mach., 2013, hal. 465–480.
S.G. Biedron, A. Edelen, E. Meier, and S. Milton, “Intelligent Controls and Modeling for Particle Accelerators and Other Research and Industrial Infrastructures,” 12th Int. Workshop Emerg. Technol., Sci. Facil. Controls, 2018, pp. 156–159, doi: 10.18429/JACoW-PCaPAC2018-THCB5.
R.S. Darmawan, K. Wibowo, and F.I. Diah, “Initial Optimization of fine Tuner’s Position on the Cyclotron DECY-13’s RF Dee System,” J. Phys. Conf. Ser., Vol. 1436, pp. 1–6, 2020, doi: 10.1088/1742-6596/1436/1/012086.
S. Silakhuddin, R.S. Darmawan, S. Suharni, and I.A. Kudus, “Characterization on DECY-13 Cyclotron Components,” To Phys. J., Vol. 6, No. 1, pp. 64–72, 2019.
A. Dwiatmaja, T. Atmono, and Saminto, “The Behaviour of RF Generator for Power Supply of Dee in The Cyclotron DECY-13,” Proc. Int. Conf. Nuclear Capacity Building, Educ., Res. Appl. (I-Concern’19) 2019, pp. 552–557.
F. Luis dan G. Moncayo. Instrumentation Integration. (2009). USPAS09. Albuquerque, AS: University of New Mexico.
H.S. Chang et al., “Control System Design of KIRAMS-13 Cyclotron,” Proc. APAC 2004, 2004, pp. 326–328.
Z. Li et al., “General Engineering Consideration for the 100 MeV Cyclotron,” Proc. 17th Int. Conf. Cyclotrons, Their Appl. 2004, 2004, pp. 1-3.
K.S. White et al., “Modernizing the SNS Control System,” 18th Int. Conf. Acc., Large Exp. Phys. Control Syst., 2021, pp. 21–25, doi: 10.18429/JACoW-ICALEPCS2021-MOAR01.
A. Trifonov et al., “The Control System of the LINAC-200 Electron Accelerator at JINR,” 18th Int. Conf. Acc., Large Exp. Phys. Control Syst., 2021, pp. 302–306, doi: 10.18429/JACoW-ICALEPCS2021-TUAR03.
V. Aleinikov, V. Badmatsyrenova, S. Pachtchenko, and K. Sychev, “Control System User Interface for the Cyclotron DC-280,” 26th Russ. Part. Accel. Conf., 2018, hal. 435–436, doi: 10.18429/JACoW-RUPAC2018-THPSC13.
L.S. Perissinotto, F.H. Cardoso, and M.M. Donatti, “CompactRIO Custom Module Design for the Beamline’s Control System at Sirius,” 18th Int. Conf. Acc., Large Exp. Phys. Control Syst., 2021, pp. 715–719, doi: 10.18429/JACoW-ICALEPCS2021-WEPV028.
A. Uchiyama et al., “Control System of the SRILAC Project at RIBF,” 18th Int. Conf. Acc., Large Exp. Phys. Control Syst., 2021, pp. 147–152, doi: 10.18429/JACoW-ICALEPCS2021-MOPV015.
A. Abdorrahman et al., “Control System of 10-MeV Baby Cyclotron,” Proc. 20th Int. Conf. Cyclotrons, Their Appl., 2013, pp. 156–158.
Y.S. Lee et al., “The Development of Control System for 9 MeV Cyclotron,” Proc. 20th Int. Conf. Cyclotrons, Their Appl., 2013, pp. 159–161.
Silakhuddin and S. Santosa, “Conceptual Design Study of 13 MeV Proton Cyclotron,” Atom Indones., Vol. 38, No. 1, pp. 7–14, Apr. 2012, doi: 10.17146/aij.2012.135.
Silakhuddin, “Persiapan and Prosedur Pre-Commissioning Siklotron DECY-13,” Pros. Pertemuan, Presentasi Ilm. Penelit. Dasar Ilmu Pengetahuan, Teknol. Nuklir, 2016, pp. 151–157.
I.A. Kudus, Taufik, K. Wibowo, and F.S. Permana, “Perbandingan Hasil Konstruksi Terhadap Hasil Simulasi Dari Isokronus Magnet Siklotron DECY-13,” J. Iptek Nukl. Ganendra, Vol. 20, No. 2, pp. 83-90, Jul. 2017, doi: 10.17146/gnd.2017.20.2.3577.
R.S. Darmawan and A. Dwiatmaja, “Penyesuaian Nilai Impedansi Komponen Coupler Sistem RF Dee Siklotron DECY-13,” Pros. Pertem. Present. Ilm. Penelit. Dasar Ilmu Pengetah. Teknol. Nukl., 2018, pp. 359-362.
Magnet Power Supply 855: System 8500, DANFYSIK A/S, Taastrup, Denmark, 2012.
Silakhuddin and R.S. Darmawan, “Desain Perangkat Pengukuran Energi Partikel Proton dengan Teknik Aktivasi Tumpukan Keping pada Siklotron DECY-13,” Pros. Pertem. Present. Ilm. Penelit. Dasar Ilmu Pengetah. Teknol. Nukl., 2018, pp. 349–354.
F.S. Permana, Saminto, K. Wibowo, and V.A.F. Sari, “Human Machine Interface Berbasis Labview untuk Operasi Sistem Vakum Siklotron Proton DECY-13 MeV,” Pros. Pertem. Present. Ilm. Penelit. Dasar Ilmu Pengetah. Teknol. Nukl., 2016, pp. 186–192.
T.W. Koeth, “Undergraduate Education with the Rutgers 12-Inch Cyclotron,” Phys. Procedia, Vol. 66, pp. 622-631, 2015, doi: 10.1016/j.phpro.2015.05.083.
© Jurnal Nasional Teknik Elektro dan Teknologi Informasi, under the terms of the Creative Commons Attribution-ShareAlike 4.0 International License.