Jetson Nano-Based Mask Detection System with TensorFlow Deep Learning Framework
Abstract
Indonesia is one of the countries experiencing COVID-19 impacts. Various measures have been conducted to prevent the spread of this virus. One of the efficient measures to prevent this impact is by implementing a strict health protocol and proper mask-wearing. Mask-wearing monitoring continues to be carried out in office buildings, supermarkets, and other public spaces. The supervisor’s role is indispensable in supervising proper mask-wearing. However, a supervisor has limitations in conducting supervision, creating a gap for people not to comply with mask-wearing rules properly. Therefore, it is necessary to have a system that works automatically to assist supervisors in monitoring proper mask-wearing. This paper aims to design a computer vision capable of detecting whether or not a person wears a mask using the TensorFlow deep learning framework. TensorFlow is used for its efficiency in processing digital image data. The classification of digital image data in TensorFlow uses a Keras deep learning structure. As a result, it is lightweight and can be used on embedded devices such as Jetson Nano to detect mask-wearing in real time. The stages of a mask detection system consisted of image dataset collection, feature extraction, data separation, modeling, model training, and model implementation. TensorFlow deep learning framework processed image data directly through a webcam. When the camera captured the object of the person not wearing the mask properly, the monitor screen displayed a red box on the face. The sign can help the supervisor when conducting supervision. The test results show that the system successfully correctly detects unmasked people, with an accuracy of 99.48%. In addition, the system also managed to detect people wearing masks properly and got an average accuracy of 99.12%. The monitor displays a green box on the face when the detected person properly wears a mask.
References
(2021) “Coronavirus Disease (COVID-19): How Is It Transmitted?” [Online], https://www.who.int/news-room/questions-and-answers/item/coronavirus-disease-covid-19-how-is-it-transmitted, access date: 6-Jul-2022.
(2022) “Virus Corona (COVID-19),” [Online], https://news.google.com/covid19/map?hl=id&mid=%2Fm%2F03ryn&gl=ID&ceid=ID%3Aid, access date: 6-Jul-2022).
(2020) “Anjuran mengenai penggunaan masker dalam konteks COVID-19,” [Online], https://www.who.int/docs/default-source/searo/indonesia/covid19/anjuran-mengenai-penggunaan-masker-dalam-konteks-covid-19-june-20.pdf, access date: 6-Jul-2020.
H.E. Siahaineinia and T.L. Bakara, “Persepsi Masyarakat tentang Penggunaan Masker dan Cuci Tangan selama Pandemi COVID-19 di Pasar Sukaramai Medan,” Wahana Inov.: J. Penelit. dan Pengabdi. Masy. UISU, Vol. 9, No. 1, pp. 172–176, Jan.-Jun. 2020.
S.F. Rizqah, Haeruddin, and A.R. Amelia, “Hubungan Perilaku Masyarakat dengan Kepatuhan Penggunaan Masker untuk Memutus Rantai Penularan COVID-19 di Kelurahan Bontoa Maros,” J. Muslim Community Health, Vol. 2, No. 3, pp. 165–175, Jul.-Sep. 2021, doi: 10.52103/jmch.v2i3.553.
E. Lubis, “Peran Protokoler dalam Menunjang Keberhasilan Kinerja Kepala Bagian Umum Pemerintahan Kabupaten Deli Serdang,” Perspektif, Vol. 7, No. 2, pp. 362–373, Jul. 2014, doi: 10.31289/perspektif.v4i2.165.
J. Chai, H. Zeng, A. Li, and E.W.T. Ngai, “Deep Learning in Computer Vision: A Critical Review of Emerging Techniques and Application Scenarios,” Mach. Learn. Appl., Vol. 6, pp. 1–13, Dec. 2021, doi: 10.1016/j.mlwa.2021.100134.
S.C. Hsu, Y.W. Wang, and C.L. Huang, “Human Object Identification for Human-Robot Interaction by Using Fast R-CNN,” 2018 Second IEEE Int. Conf. Robot. Comput. (IRC), 2018, pp. 201–204, doi: 10.1109/IRC.2018.00043.
D. Kim et al., “Real-Time Multiple Pedestrian Tracking Based on Object Identification,” 2019 IEEE 9th Int. Conf. Consum. Electron. (ICCE-Berlin), 2019, pp. 363–365, doi: 10.1109/ICCE-Berlin47944.2019.8966205
S.I. Ali, S.S. Ebrahimi, M. Khurram, and S.I. Qadri, “Real-Time Face Mask Detection in Deep Learning Using Convolution Neural Network,” 2021 10th IEEE Int. Conf. Commun. Syst., Netw. Technol. (CSNT), 2021, pp. 639–642, doi: 10.1109/CSNT51715.2021.9509704.
M.I. Amin, M.A. Hafeez, R. Touseef, and Q. Awais, “Person Identification with Masked Face and Thumb Images under Pandemic of COVID-19,” 2021 7th Int. Conf. Control, Instrum., Automat. (ICCIA), 2021, pp. 1-4, doi: 10.1109/ICCIA52082.2021.9403577.
M.R. Alwanda, R.P.K. Ramadhan, and D. Alamsyah, “Implementasi Metode Convolutional Neural Network Menggunakan Arsitektur LeNet-5 untuk Pengenalan Doodle,” Algoritm., Vol. 1, No. 1, pp. 45–56, Oct. 2020, doi: 10.35957/algoritme.v1i1.434.
J. Pujoseno, “Implementasi Deep Learning Menggunakan Convolutional Neural Network untuk Klasifikasi Alat Tulis,” Undergraduate thesis, Universitas Islam Indonesia, Sleman, Indonesia, Mar. 2018.
M.N.H. Siregar, “Model Arsitektur Artificial Neural Network pada Pelanggan Listrik Negara (PLN),” InfoTekJar (J. Nas. Inform., Teknol. Jar.), Vol. 3, No. 1, pp. 1–5, Sep. 2018, doi: 10.30743/infotekjar.v3i1.642.
M.B. Herlambang (2019) “Deep Learning: Recurrent Neural Networks homepage on website Epam,” [Online], https://www.megabagus.id/deep-learning-recurrent-neural-networks/, access date: 6-Jul-2022.
G. Kaur et al., “Face Mask Recognition System Using CNN Model,” Neurosci. Inform., Vol. 2, No. 3, pp. 1-9, Sep. 2022, doi: 10.1016/j.neuri.2021.100035.
O. Kembuan, G.C. Rorimpandey, and S.M.T. Tengker, “Convolutional Neural Network (CNN) for Image Classification of Indonesia Sign Language Using Tensorflow,” 2020 2nd Int. Conf. Cybern., Intell. Syst. (ICORIS), 2020, pp. 1-5, doi: 10.1109/ICORIS50180.2020.9320810.
R. Tineges (2021) “Algoritma Deep Learning : Kenalan dengan Bagian-Bagian Deep Learning, Yuk!” [Online], https://www.dqlab.id/algoritma-deep-learning-machine-learning, access date: 6-Jul-2022.
(2021) “Convolutional Neural Network With Tensorflow and Keras,” [Online], https://medium.com/geekculture/introduction-to-convolutional-neural-network-with-tensorflow-and-keras-cb52cdc66eaf, access date: 6-Jul-2022.
R.M. Pradistya (2021) “Mengenal Tensorflow, Library untuk Keperluan Machine Learning Python” [Online], https://www.dqlab.id/mengenal-tensorflow-library-untuk-keperluan-machine-learning-python, access date: 8-Jul-2022.
Friendly, Z. Sembiring, and H.R. Safitri, “Deteksi Wajah Bermasker Berbasis Tensorflow-Keras untuk Pengendalian Gerbang Akses Masuk Menggunakan Rasberry Pi4,” JIKSTRA, Vol. 2, No. 2, pp. 45–55, Oct. 2020.
(2021) “TensorFlow_Lite_Face_Mask_Jetson-Nano,” [Online], https://github.com/Qengineering/TensorFlow_Lite_Face_Mask_Jetson-Nano, access date: 6-Jul-2022.
F.A.M. Ali, and M.S.H. Al-Tamimi, “Face Mask Detection Methods and Techniques: A Review,” Int. J. Nonlinear Anal., Appl., Vol. 13, No. 1, pp. 3811-3823, Jan. 2022, doi: 10.22075/ijnaa.2022.6166.
V.K. Pandey, V.K. Gupta, and S. Kumar, “Face Mask Detection Using Convolutional Neural Network,” 2021 3rd Int. Conf. Adv. Comput., Commun. Control, Netw. (ICAC3N), 2021, pp. 951–954, doi: 10.1109/ICAC3N53548.2021.9725689.
S. Singh et al., “Face Mask Detection Using YOLOv3 and Faster R-CNN Models: COVID-19 Environment,” Multimed. Tools, Appl., Vol. 80, No. 13, pp. 19753–19768, Mar. 2021, doi: 10.1007/s11042-021-10711-8.
V. Saminathan et al., “Face Mask Detection Using Raspberry Pi,” Ann. Romanian Soc. Cell Biol., Vol. 25, No. 4, pp. 9982–9988, Apr. 2021.
E.N. Arrofiqoh and Harintaka, “Implementasi Metode Convolutional Neural Network untuk Klasifikasi Tanaman pada Citra Resolusi Tinggi,” Geomatika, Vol. 24, No. 2, pp. 61-68, Nov. 2018, doi: 10.24895/jig.2018.24-2.810.
Trivusi (2022) “Pengertian dan Cara Kerja Algoritma Convolutional Neural Network (CNN),” [Online], https://www.trivusi.web.id/2022/04/algoritma-cnn.html, access date: 11-Aug-2022.
J. Feriawan and D. Swanjaya, “Perbandingan Arsitektur Visual Geometry Group dan MobileNet pada Pengenalan Jenis Kayu,” Sem. Nas. Inov. Teknol., 2020, pp. 185–190, doi: /10.29407/inotek.v4i3.84.
P. Nyoman and P.K. Negara, “Deteksi Masker Pencegahan Covid19 Menggunakan Convolutional Neural Network Berbasis Android,” J. RESTI (Rekayasa Sist., Teknol. Inf.), Vol. 5, No. 3, pp. 576–583, Jun. 2021, doi: 10.29207/resti.v5i3.3103.
A. Rosebrock (2020) “COVID-19: Face Mask Detector with OpenCV, Keras/TensorFlow, and Deep Learning,” Online], https://pyimagesearch.com/2020/05/04/covid-19-face-mask-detector-with-opencv-keras-tensorflow-and-deep-learning/, access date: 6-Jul-2022.
F.R. Lumbanraja et al., “An Evaluation of Deep Neural Network Performance on Limited Protein Phosphorylation Site Prediction Data,” Procedia Comput. Sci., Vol. 157, pp. 25–30, 2019, doi: 10.1016/j.procs.2019.08.137.
(2021) “Jetson Nano Developer Kit,” [Online], https://developer.nvidia.com/embedded/jetson-nano-developer-kit, access date: 7-Jul-2022.
© Jurnal Nasional Teknik Elektro dan Teknologi Informasi, under the terms of the Creative Commons Attribution-ShareAlike 4.0 International License.