Fast Charging on Li-ion Batteries with ANFIS Control

  • Renny Rakhmawati Politeknik Elektronika Negeri Surabaya
  • Zhafira Rana Khalisa Permana Politeknik Elektronika Negeri Surabaya
  • Rachma Prilian Eviningsih Politeknik Elektronika Negeri Surabaya
  • Suhariningsih Politeknik Elektronika Negeri Surabaya
Keywords: ANFIS, Buck Converter, CC-CV, Fast Charging Li-ion Battery

Abstract

Most electrical energy used today comes from fossil fuels, which can deplete and contribute to air pollution. In Indonesia, the sun can be used as an alternative energy source and converted into electrical energy utilizing solar panel technology. The voltage generated by the solar panel is relatively high, so it needs to be lowered using a DC-DC converter type buck converter. This electrical energy can be stored using a battery which can be charged in a fast-charging mode to shorten the charging time. The most suitable battery type for fast charging is the lithium-ion (Li-ion) type for its capability to receive large current as big as 1C or equal to the battery capacity. Due to the temperature and solar irradiance effects, the output generated by the solar panel source is not constant. Moreover, to prevent overcharging, a constant current (CC) method with a constant current of 10 A and a constant voltage of 14.4 V was used which the PWM duty cycle driver was controlled using the adaptive neuro-fuzzy inference system (ANFIS) algorithm to obtain a faster response to reach the specified set point. ANFIS is a combination of two algorithms, i.e., artificial neural network (ANN) and fuzzy inference system (FIS). This research was conducted in simulation, the charging current results at the CC method of 10.01A were obtained and would move from the CC method to constant voltage (CV) when the state of charge (SoC) was 85% and the voltage reached 14.4 V. Then, the charging method would change to CV with a constant charging voltage of 14.4 V. When compared to the previous research using fuzzy control, the time required for ANFIS controls to reach set points was 3.2 ms, which is 2.3 ms faster than fuzzy controls, and ANFIS controls can reach set points with fewer errors.

References

C.A. Iskak, N.A. Windarko, and R. Rakhmawati, “Design and Implementation Bidirectional DC-DC Converter for Load Sharing and Charging Battery,” 2019 Int. Seminar Appl. Technol. Inf., Commun. (iSemantic), 2019, pp. 455–459, doi: 10.1109/ISEMANTIC.2019.8884344.

R. Rakhmawati, Suhariningsih, J.H. Farrasbyan, and F.D. Murdianto, “Performance Robustness of PID Controller in Buck Converter for Cooling System,” 2018 Int. Seminar Appl. Technol. Inf., Commun. (iSemantic), 2018, pp. 127–132, doi: 10.1109/ISEMANTIC.2018.8549781.

R. Rakhmawati, Suhariningsih, and F.P.I. Putra, “Temperature Control System on a Coconut Dryer Using Solar Cells with Buck-Boost Converter on Charging Battery,” 2017 Int. Seminar Appl. Technol. Inf., Commun. (iSemantic), 2017, pp. 115–120, doi: 10.1109/ISEMANTIC.2017.8251854.

E. Roza and M. Mujirudin, “Perancangan Pembangkit Tenaga Surya Fakultas Teknik Uhamka,” J. Kaji. Tek. Elektr., Vol. 4, No. 1, pp. 16–30, Mar.–Aug. 2019, doi: 10.52447/jkte.v4i1.1386.

R. Rakhmawati, Suhariningsih, and S. Husniatuzzahro, “Design Flyback Converter for Charging Battery Using Fuzzy Logic Controller,” 2020 Int. Seminar Appl. Technol. Inf., Commun. (iSemantic), 2020, pp. 396–402, doi: 10.1109/iSemantic50169.2020.9234195.

K.A. Morsy, M.A. Abouelatta, M.M. El-Banna, and M.K. Elsaid, “Modeling and Simulation of Photovoltaic Module for Space Applications Using Simulink/MATLAB,” 2018 First Int. Workshop Deep, Representation Learn. (IWDRL), 2018, pp. 55–61, doi: 10.1109/IWDRL.2018.8358215.

I.N.W. Satiawan, Supriono, and I.B.F. Citarsa, “Desain Buck Converter untuk Charging Batere pada Beban Bervariasi,” Dielektrika, Vol. 5, No. 1, pp. 30–35, Mar. 2018.

T. Rohana, “Implementasi Adaptive Neural Fuzzy Inference System (ANFIS) untuk Menguji Kualitas Printed Circuit Board (PCB),” Techno Xplore: J. Ilm. Komput., Teknol. Inf., Vol. 5, No. 2, pp. 79–90, Oct. 2020, doi: 10.36805/technoxplore.v5i2.907.

A.T. Prasetyo, Endryansyah, B. Suprianto, and P.W. Rusimamto, “Desain Sistem Pengaturan Sudut Aero PendulumMenggunakan Adaptive Neuro Fuzzy Inference System (ANFIS) Berbasis MATLAB,” J. Tek. Elekt., Vol. 10, No. 2, pp. 387–395, Jun. 2021, doi: 10.26740/jte.v10n2.p387-395.

K. Witono, A. Asrori, and A. Harijono, “The Comparison of Performance Polycrystalline and Amorphous Solar Panels under Malang City Weather Conditions,” Bull. Sci. Educ., Vol. 1, No. 2, pp. 124–135, May 2021, doi: 10.51278/bse.v1i2.107.

F. Murdiya et al., “Pembangkit Listrik Tenaga Surya untuk Pompa Air dan Penerangan dalam Program Pengabdian Kepada Masyarakat,” J. Pengabdi. Untuk Mu NegeRI, Vol. 4, No. 2, pp.192¬–198, Nov. 2020, doi: 10.37859/jpumri.v4i2.2109.

M.W. Alim, N.A. Windarko, and R. Rakhmawati, “Fuzzy Logic Control Design on Buck Converter for Thermo Electric Air Cooler Power Supply,” J. Adv. Res. Elect. Eng., Vol. 4, No. 2, Oct. 2020, doi: 10.12962/j25796216.v4.i2.137.

F.A.I. Prastya, W. Indrasari, and R.N. Setiadi, “Simulasi Rangkaian DC-DC Buck Converter pada Sistem Penyimpanan Daya Listrik Panel Surya,” Pros. Seminar Nas. Fis. (E-J.) SNF2022, Vol. 10, pp. 103–108, Jan. 2022, doi: 10.21009/03.SNF2022.01.FA.14.

M. Ali, “Rangkaian DC Chopper dan Aplikasinya,” in Aplikasi Elektronika Daya pada Sistem Tenaga Listrik, 1st ed., Yogyakarta, Indonesia: UNY Press, 2018, ch. 7, pp. 108–111.

A.Z. Falih, M.Z. Efendi, and F.D. Murdianto, “CC-CV Controlled Fast Charging Using Fuzzy Type-2 for Battery Lithium-Ion,” JAREE (J. Adv. Res. Electr. Eng.), Vol. 5, No. 2, pp. 135–141, Oct. 2021, doi: 10.12962/jaree.v5i2.200.

A. Anshori, B. Siswojo, and R.N. Hasanah, “Teknik Fast Charging Baterai Lithium-Ion Menggunakan Logika Fuzzy,” J. Ecotipe (Electron. Control Telecommun. Inf., Power Eng.), Vol. 7, No.1, pp. 26–37, Apr. 2020, doi: 10.33019/ecotipe.v7i1.1384.

M.T. Afif and I.A.P. Pratiwi, “Analisis Perbandingan Baterai Lithium-Ion, Lithium-Polymer, Lead Acid dan Nickel-Metal Hydride pada Penggunaan Mobil Listrik – Review,” J. Rekayasa Mesin, Vol. 6, No. 2, pp. 95–99, Aug. 2015, doi: 10.21776/ub.jrm.2015.006.02.1.

A.P. Hakim, S.S. Suprapto, and M.N. Farid, “Pengaruh Beban dan Filter pada Penyearah AC-DC Terkendali untuk Rangkaian Pengisi Li-ion Berbasis Bridge Rectifier dan Buck Converter Menggunakan Metode CC/CV,” J. Teknol. Terpadu, Vol. 1, No. 9, pp. 88–92, Apr. 2021, doi: 10.32487/jtt.v9i1.1118.

Irianto, D.S. Yanaratri, and F. Rahmatullah, “Desain dan Simulasi Battery Charger Metode CCCV (Constant Current-Constant Voltage) dengan Kontrol Logika Fuzzy Menggunakan MATLAB,” Cyclotron: J. Tek. Elektr., Vol. 4, No. 2, pp. 18–22, Jul. 2021, doi: 10.30651/cl.v4i2.8621.

Battery University (2021) “BU-401a: Fast and Ultra-fast Chargers,” [Online], https://batteryuniversity.com/article/bu-401a-fast-and-ultra-fast-chargers, access date: 10-Jun-2022.

M. Beken et al., “The ANFIS as a Prediction Method of Efficiency of PV Cells,” 2018 7th Int. Conf. Renew. Energy Res., Appl. (ICRERA), 2018, pp. 1389–1391, doi: 10.1109/ICRERA.2018.8566798.

N.I. Mufa’ary, I. Sudiharto, and F.D. Murdianto, “Comparison of FLC and ANFIS Methods to Keep Constant Power Based on Zeta Converter,” INTEK: J. Penelit., Vol. 8, No. 1, pp. 21–29, Apr. 2021, doi: 10.31963/intek.v8i1.2701.

R.N. Fajriani, F. Asriani, and H. Susilawati, “Penerapan Adaptive Neuro-Fuzzy Inference System (ANFIS) untuk Pemantauan Status Gunung Merapi,” Pros. Seminar Nas. Multim., Artif. Intell., 2018, pp. 140–150.

B. Fechera, J. Kustija, and S. Elvyanti, “Optimasi Penggunaan Membership Logika Function Membership Fuzzy pada Kasus Identifikasi Kualitas Minyak Transformator,” ELECTRANS – J. Tek. Elektr., Vol. 11, No. 2, pp. 27–35, Sep. 2012.

Published
2023-05-24
How to Cite
Renny Rakhmawati, Permana, Z. R. K., Rachma Prilian Eviningsih, & Suhariningsih. (2023). Fast Charging on Li-ion Batteries with ANFIS Control. Jurnal Nasional Teknik Elektro Dan Teknologi Informasi, 12(2), 93-100. https://doi.org/10.22146/jnteti.v12i2.5143
Section
Articles