Naive Bayes Classifier – Smoothing Method on Smartphone Sensors for Driver Activity Classification

  • Haniah Mahmudah Politeknik Elektronika Negeri Surabaya
  • Okkie Puspitorini Politeknik Elektronika Negeri Surabaya
  • Nur Adi Siswandari Politeknik Elektronika Negeri Surabaya
  • Ari Wijayanti Politeknik Elektronika Negeri Surabaya
  • Eliya Alfatekha Politeknik Elektronika Negeri Surabaya
Keywords: Naive Bayes, Smoothing, Giroskop, Akselerometer, Smartphone

Abstract

Most causes of death are traffic accidents. This paper aims to obtain parameters of identification of driving activities that can be developed to detect accidents in the next studies. Data is collected by sensors on smartphones, using accelerometer and gyroscope sensors. The proposed method uses Naive Bayes Classifiers (NBC) algorithm to determine driving activity, by dividing dataset into training and testing data using k-fold parameters. NBC can work using less training data, by calculating the probability value of each class from means and variance of each feature to classify classes efficiently. The results show that the accuracy of the classification is higher if a smoothing process is carried out, using single exponential smoothing method, before the clacification process of the NBC algorithm is done. The testing using 8 k-fold CV without smoothing process, using smoothing alpha (α) = 0.1, and using α = 0.9 obtain the accuracy of 98.43%, 99.27%, and 98.43%, respectively. It can be concluded that the NBC method combined with smoothing method using α = 0.1 produces greater accuracy.

References

Social Determinants of Health, Global Status Report on Road Safety 2018, Geneva, Switzerland: World Health Organization, 2018.

(2020) “Rata-rata Tiga Orang Meninggal Setiap Jam Akibat Kecelakaan Jalan,“ [Online], https://kominfo.go.id/index.php/content/detail/10368/rata-rata-tiga-orang-meninggal-setiap-jam-akibat-kecelakaan-jalan/0/artikel_gpr, tanggal akses: 1-Jan-2020.

L. Dang-Nhae, N. Due-Nhan, N. Thi-Hau, dan N. Ha-Nam, “Vehicle Mode and Driving Activity Detection Based on Analyzing Sensor Data of Smartphone,” Sensors, Vol. 18, No. 4, hal. 1-25, Mar. 2018.

A. Dinh, L. Chen, dan X. Yang, “Implementation of a Wearable Real-Time System for Physical Activity Recognition based on Naive Bayes Classifier,” IEEE International Conference on Bioinformatics and Biomedical Technology, 2010, hal. 101-105.

J. Santoso, A.D.B. Soetiono, Gunawan, E. Setyati, E.M. Yuniarno, M. Hariadi, dan M.H. Purnomo, ”Self-Training Naive Bayes Berbasis Word2Vec untuk Kategorisasi Berita Bahasa Indonesia,” JNTETI, Vol. 7, No. 2, hal. 158-166, Mei 2018.

H. Zhang dan D. Li, ”Naïve Bayes Text Classifier,” 2007 IEEE International Conference on Granular Computing (GRC 2007), 2007, hal. 708-711.

F.-J. Yang, “An Implementation of Naive Bayes Classifier,” 2018 International Conference on Computational Science and Computational Intelligence (CSCI), 2018, hal. 301-306.

Q. Yuan, G. Cong, dan N.M. Thalmann, “Enhancing Naive Bayes with Various Smoothing Methods for Short Text Classification,” Proceedings of the 21st International Conference on World Wide Web, 2012, hal. 645-646.

G. Dewantoro, F.D. Setiaji, dan E.C. Mone, ”Skema Kendali Ball-Balancing Robot Secara Nirkabel,” JNTETI, Vol. 3, No. 2, hal. 136-141, Mei 2014.

R. Setiawan, A. Arifin, F. Budiman, dan Ad. Soeprijanto, ”Desain Sistem Pengukuran Lower Limb Joint Angles pada Kondisi Dinamik untuk FES,” JNTETI, Vol. 7, No. 1, hal. 112-121, Feb. 2018.

Y. Wihardi (2013) “K-Folds Cross Validation“ [Online], http://blog.yayaw.web.id/riset/k-folds-cross-validation, tanggal akses: 6-Mei-2020.

R. Anggrainingsih, G.R. Aprianto, dan S.W. Sihwi, ”Time Series Forecasting Using Exponential Smoothing to Predict the Number of Website Visitor of Sebelas Maret University,” 2015 2nd International Conference on Information Technology, Computer, and Electrical Engineering (ICITACEE), 2015, hal. 14-19.

S. Raschka, “Naive Bayes and Text Classification I: Introduction and Theory,” eprint arXiv:1410.5329, hal. 1-20, 2014.

Published
2020-08-27
How to Cite
Haniah Mahmudah, Okkie Puspitorini, Nur Adi Siswandari, Ari Wijayanti, & Eliya Alfatekha. (2020). Naive Bayes Classifier – Smoothing Method on Smartphone Sensors for Driver Activity Classification. Jurnal Nasional Teknik Elektro Dan Teknologi Informasi, 9(3), 268-277. https://doi.org/10.22146/.v9i3.382
Section
Articles