CFBPSO sebagai Solusi Economic Dispatch pada Sistem Kelistrikan 500 kV Jawa-Bali
Abstrak
Komponen biaya paling besar pada operasi pembangkitan thermal adalah biaya bahan bakar. Permasalahan bagaimana meminimalkan biaya bahan bakar dengan menentukan kombinasi daya output dari masing-masing unit pembangkit dengan kekangan terpenuhinya beban sistem dan batas kemampuan masing-masing unit pembangkit dikenal dengan istilah economic dispatch (ED). Dalam penelitian ini, diusulkan metode Modified Improved Particle Swarm Optimization (MIPSO) dengan pendekatan Contriction Factor based Particle Swarm Optimization (CFBPSO) Kemudian metode pendekatan ini diterapkan dalam 2 kasus sistem tenaga yaitu pada kasus IEEE 30 bus pada pembebanan 800 MW dan sistem interkoneksi 500 kV Jawa-Bali dengan pembebanan puncak 12.058 MW. Dari hasil simulasi IEEE 30 bus, metode MIPSO dengan pendekatan CFBPSO mampu menghasilkan solusi paling optimal ekonomi dibanding metode pendekatan IPSO dan Quadratic Programing. Untuk kasus sistem interkoneksi 500 kV Jawa-Bali, metode MIPSO dengan pendekatan ini juga mampu memberikan solusi paling optimal dibanding dengan sistem real PT. PLN (Persero).
Referensi
Jizhong, Optimization of Power System Operation Principal Engineer. AREVA T & D Inc. Redmond, WA, USA, IEEE series of Power Engineering. 2009.
Hadi Saadat. Power System Analysis. New Delhi: Tata McGraw Hill Publishing Company. 2001.
Z.X. Liang, J. D. Glover. A Zoom Feature For a Dynamic Programming Solution to Economic Dispatch Including Transmission Losses. IEEE Transactions on Power Systems, 1992; page 544-550.
Hardiansyah, Junaidi, MS. Yohannes. Solving Economic Load Dispatch Problem Using Particle Swarm Optimization Technigue. I.J. Intelligent Sistem and Application. 2012; page: 12-18.
M. Sudhakaran, P. Ajay, D. Vimal Raj, T.G. Palanivelu. Application of Particle Swarm Optimization for Economic Load Dispatch Problem. International Conference on Intelligent Sistem Application to Power Sistem. Nov. 2007; page 4-8.
Adrianti. Penjadwalan Ekonomis Pembangkit Thermal dengan Memperhitungkan Rugi-rugi Saluran Transmisi Menggunakan Metode Algoritma Genetik. Jurnal TeknikA Jurusan Teknik Elektro, Fakultas Teknik, Universitas Andalas. April 2010; page 33 vol. 1.
M Mohatram, S Kumar. Application of Artificial Neural Network in Economic Generation Scheduling of Thermal Power Plants. Proceedings of the National Conference. 2006.
Zwe-Lee Gaing. Particle Swarm Optimization to Solving The Economic Dispatch Considering The Generator Constraints. IEEE Transaction on Power Sistem. August 2003; Vol. 18, No. 3.
Steven Young, Moh. Montakhab, Hassan Nouri. A Constriction Factors based Particle Optimization Algorithm to Solve The Economic Dispatch Problem Including Losses. International Journal of Innovations in Energy Sistem and Power. July 2011; Vol. 6, No. 1.
Andi Muh. Ilyas, M. Natsir Rahman. Economic Dispatch Thermal Generator Using Modified Improved Particle Swarm Optimization. Jurnal Telkomnika. July 2012; Vol. 10, No.3, pp 459-470.
AM. Ilyas, Ontoseno Panangsang, Adi Soeprijanto. Optimisasi Pembangkit Thermal Sistem 500 kV Jawa-Bali Menggunakan Modified Particle Swarm Optimization (MIPSO). National Conference : Design and Application of Technology, 2010.
Maickel Tuegeh, Adi Soeprijanto, Mauridhi Hery P. Optimal Generator Scheduling based on Particle Swarm Optimization. Seminar Nasional Informatika UPN Veteran Yogyakarta. Mei 2009; ISSN : 1979-2328..
Qinghai Bai. Analysis of Particle Swarm Optimization Algorithm. Computer and Informatic Science Journal. Feb.2010; Vol. 3 No 1.
J. Kennedy, R. C. Eberhart. Particle Swarm Optimization. Proceedings of IEEE International Conference on Neural Networks (ICNN’95). 1995; 1942-1948. .
Y. Shi, R. C. Eberhart. Particle Swarm Optimization: Development, Applications, and Resources. Proceedings of the 2001 Congress on Evolutionary Computation. 2001; 1: 81-86.
Y.Shi, R.Eberhart. A Modified Particle Swarm Optmizer. Proc. IEEE Int. Conf. Evol. Comput. May 1998; pp69-73.
M. Clerc. The Swarm and The Queen: Towards a Deterministic and Adaptive Particle Swarm Optimization. Proc. 1999 Congress on Evolutionary Computation, Washington, DC Piscataway, NJ: IEEE Service Centre, 1999; pp. 1951-1957.
R.C. Eberhart, Y. Shi. Comparing Inertia Weight and Constriction Factors in Particle Swarm Optimization. Proceding of the 2000 Congress on Evolutionary Computation. 2000; Vol. 1, ,pp. 84-88.
William D Stevenson, Jr. Power System Analysis Copyright 5th edition, Erlangga. 1996.
Kwang Y. Lee, Fellow, Jong-Bae Park. Application of Particle Swarm Optimization to Economic Dispatch Problem Advantages and Disadvantages. Journal IEEE. 2006; seri 142440178X.
Budi Santoso, Paul Willy. Metoda Metaheuristik Konsep dan Implementasi. Surabaya: Guna Widaya. April 2011
Pichet. Sriyanyong. Particle Swarm Optimization : Development and Implementationn. Academic paper, Department of Teacher Training in Electrical Engineering, Faculty of Technical Education, King Mongkut’s University of Technology North Bangkok.
Anula Khare, Saroj Rangnekar. Particle Swarm Optimization : A Review. Journal Department of Energy, Maulana Azad National Institute of Technology, Bhopal 462051, India.
Xiaohong Qiu, Jun Liu, Xuemei Ren. The Random Factors in Particle Swarm Optimization. Journal IEEE. 2009; seri 978-1-4244-4738-1.
Cheun-Yau Chen, Chen-Hsueh Chuang, Meng-Cian Wu. Combining Concepts of Inertia Weights and Constriction Factors in Particle Swarm Optimization. Journal IEEE. 2012; seri 978-1-4577-1779- 6/12.
Xian-Han Chien, Wie-Ping Lee, Chen-Yi Liao, Jang-Ting Dai. Adaptive Constriction Factors for Location-Related Particle Swarm. Proceeding of the 8th WSEAS International Conference on Evolutionary Computing, Vancouver, British Columbia, Canada, June 2007; 19-21.
Zhiyu You, Weirong Chen, Xiaoqiang Nan. Adaptive Weight Particle Swarm Optimization Algorithm With Constriction Factors. International Conference of Information Science and Management Engineering, 2010.
© Jurnal Nasional Teknik Elektro dan Teknologi Informasi, di bawah Lisensi Creative Commons Atribusi-BerbagiSerupa 4.0 Internasional.