Implementasi Wavelet Haar dan Jaringan Tiruan Pada Pengenalan Pola Selaput Pelangi Mata
Abstract
Eye iris pattern recognition is widely used for the purpose of identifying a person's identity. This is can be done because the iris is unique and has a high consistency and stability for years without changing. In this research we will perform iris image pattern recognition by the Haar level 3 wavelet transforms and the LVQ neural networks. This research is expected to know the iris images pattern recognition systems which are more effective; efficient also requires a short time in matching process on this method. The object in this research is the PNG color images with size of 128 x 128 pixels. Parameters used in this research are to varying value of learning rate 0.01 and 0.05, the number of neurons 30 and 40; and epoch value 100 and 200. The values of these parameters will be varied so that the obtained parameter values are the most effective, efficient and a relatively requires short time in the process of the iris image pattern recognition.Based on testing performed, the Haar level 3 wavelet transform combined with LVQ neural network in the process of finding the iris images. The method also gives fast matching process and high accuracy level. Changes in the values of learning rate, number of neurons and epoch value affect network performance. The iris matching process has the fastest time of 2.15 seconds and the higher of accuracy of 87% when the value of learning rate 0.01; the number of neurons 40 as well as the epoch value 100.
References
Li Ma, Yunhong Wang, Tieniu Tan, Iris Recognition Using Circular Symmetric Filters, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, China
Kim. J, Cho. S, Choi. J, ROBERT J. MARKS II, Iris Recognition Using Wavelet Features, Journal of VLSI Signal Processing 38, 147– 156, 2004, Kluwer Academic Publishers. Manufactured in The Netherlands
Li Ma, Yunhong Wang, Tieniu Tan, Iris Recognition Based on Multi channel Gabor Filtering, The 5th Asian Conference on Computer Vision, 23--25 January 2002, Melbourne, Australia.
C. H. Daouk, L. A. El-Esber, F. D. Kammoun and M. A. Al Alaoui, IRIS RECOGNITION, IEEE ISSPIT 2002
Daugman. J., How Iris Recognition Works, www.CL.cam.ac.uk/users/jgd1000 diambil tanggal 15 januari 2005.
Gede, Kanata, Pengenalan Citra Sidik Jari Berbasis Transformasi Wavelet dan Jaringan Syaraf Tiruan, http://puslit.petra.ac.id/journals/electrical diambil tanggal 15 januari 2005
Putra, Darma, Pengolahan Citra Digital, Andi Offset, 2010
Maimunah, Harjoko, Sistem Pengenalan Iris mata Manusia dengan Menggunakan Transformasi Wavelet, Seminar Nasional Aplikasi Teknologi Informasi, 2007
Yustisia, Rosmalinda, Jaringan Syaraf Tiruan Learning Vector Quantization untuk Aplikasi Pengenalan Tanda Tangan, Seminar Nasional Aplikasi Teknologi Informasi, 2007
Isnanto Rizal, Identifikasi Iris Mata menggunakan Tapis Gabor Wavelets dan Jaringan Syaraf Tiruan Learning Vector Quantization (LVQ), Artikel Ilmiah Terpublikasi, Universitas Diponegoro, 2009
Oktio Geraldi, Identifikasi Iris Mata Menggunakan Metode Jaringan Syaraf Tiruan, Skripsi, Universitas Indonesia, 2008
Ronald; Rizal; Ary M, Pengenalan Identitas Manusia melalui Pola Iris Mata menggunakan Transformasi Wavelet dan Mahalanobis Distance, Konferensi Nasional Sistem dan Informatika, Bali, 2008.
Anonim, 2013, Petunjuk Penulisan Usulan Penelitian dan Tesis, Program Pascasarjana Universitas Gadjah Mada Yogyakarta.
© Jurnal Nasional Teknik Elektro dan Teknologi Informasi, under the terms of the Creative Commons Attribution-ShareAlike 4.0 International License.