Metode Skoring dan Metode Fuzzy dalam Penentuan Zona Resiko Malaria di Pulau Flores
Abstract
The purpose of this study is to compare the results of malaria risk zone mapping using scoring method and fuzzy method against the actual data (API 2014). Variables used in determining malaria risk area are temperature, densiy of vegetation and land cover. Satellite image manipulation is performed using remote sensing technology. As a result, the average of every pixel in the district area for temperature, density of vegetation, and land cover is obtained. The result is
then processed using the scoring model and fuzzy model. Accuracy tests have been conducted for 91 districts where the fuzzy model has an accuracy rate of 61.54% while the scoring model produce an accuracy of 18.68%. The test result shows that the fuzzy model tends to produce a higher grade than the actual grade. Fuzzy model produces class “High” but actually “Low” (17.85%), fuzzy model produces class “Medium” but actually “Low” (2.20%), or fuzzy models produces class “High” but actually “Medium” (14.29%). This could be caused by a form of intervention for mosquito nest eradication conducted in some districts, that is quite effective. Besides, some districts are not participating actively in detecting the number of malaria cases, hence, the actual data provided by Puskesmas tends to be lower.
References
Dinkes NTT, “Profil Kesehatan,” Dinas Kesehatan NTT, hal. 66-70, 2014.
A. Sally, “Laporan Bidang P2MK DINKES NTT,” Dinas Kesehatan NTT, hal. 22, 2014.
J. Wilder, “Modelling Malaria Transmaission Risk Using Satellite-Based Remote Sensing Imagery,” M. Sc. thesis, Northwest Missouri State University, Maryville, Missouri, Nov. 2007.
M. Simeon, “Geographic Information System and Remote Sensing Based Malaria Risk Mapping Using Environmetal Factors,” M.A. thesis, Addis Ababa University, Ethiopia, June. 2014.
Santanu Dutta, Malaria Epidemiology on Jalpaiguri District Applying Remote Sensing & Geographic Information System, No-16.,Center of Remote Sensing Application, North Bengal University, 2006.
T.A. Abeku, “Malaria Epidemics in Africa: Prediction, Detectie and Response,” PhD. thesis, Erasmus University, Rotterdam, Sept. 2006.
Y.A.Afrene, A.K. Githeko, dan G. Yan, “Malaria Transmission in The African Highlands in a Chinging Clomate Situation,” Ed. Dr.Stefano Casalegno, Croatia: INTECH, 2011.
D. Chikodzi, “Spatial Modelling of Malaria Risk Zones Using Environmental, Anthropogenic Variable and Geographical Information System Techniques,” Journal of Geosciences and Geomatics., vol. 1, hal. 8–14, Nov. 2013.
D. Sihotang, dan D.Punuf, “Analisis Parameter Spasial Habitat Nyamuk Anopheles di Pulau Flores,” Jurnal MIPA UNDANA., vol. 19, hal. 101–111, Sept. 2015.
M.N. Budiyanto, P.I Santosa, dan S.Sumaryono, “Purwarupa Sistem Peringatan Dini Awan Panas Gunungapi Berbasis Sistem Informasi Geografi,” JNTETI., vol. 1, hal. 24–30, Mei. 2012.
D. Sihotang, T. Widiastuti, dan T. Kartika, “Route Selection System Based on GIS Using Scoring Method and Fuzzy Method,” Proc. ISBC, 2013, hal. 256-259.
S. Drobne, dan A.Lisec, “Multi-attribute Decision Analysis in GIS: Weighted Linear Combination and Ordered Weighted Averaging, ”Informatica, 2009, hal.459-474.
L-X Wang, A Course in Fuzzy Systems and Control, International ed., Prentice-Hall International Inc,1996.
S.Adhimantoro, “Mengetahui Tingkat Kematangan Buah Dengan Ultrasonik Menggunakan Logika Fuzzy,” JNTETI., vol. 3, hal. 63–68, Feb. 2014.
T.J. Ross, Fuzzy Logic with Engineering Applications, 2nd ed.,University of New Mexico, USA, John Wiley & Sons, 2004.
F. Susilo, Pengantar Himpunan & Logika Kabur serta Aplikasinya, Universitas Sanata Dharma, 2003.
© Jurnal Nasional Teknik Elektro dan Teknologi Informasi, under the terms of the Creative Commons Attribution-ShareAlike 4.0 International License.