Pengelompokan Artikel Berbahasa Indonesia Berdasarkan Struktur Laten Menggunakan Pendekatan Self Organizing Map
Abstract
Document grouping is a necessity among a large number of articles published on internet. Several attempts have been done to improve this grouping process, while majority of the efforts are based on word appearance. In order to improve its quality, the grouping of documents need to be based on topic similarity between documents, instead of the frequency of word appearance. The topic similarity could be known from its latency, since the similarity of the word interpretation are often used in the same context. In the unsupervised learning process, SOM is often used, in which this approach simplifies the mapping of multi-dimension data. This research result shows that implementation of the latent structure decreases characteristic dimension by 32% of the word appearance, hence makes this approach more time efficient than others. The latent structure, however, when implemented on SOM Algorithm, is capable to obtain good quality result compared to word appearance frequency approach. It is then proven by 5% precision improvement, recall improvement of 3%, and another 4% from F-measure. While the achievement is not quite significant, the quality improvement is able to put the dominance of grouping process, compared to the original classification defined by the content provider.
References
A. Z. Arifin dan N. A. Setiono, “Klasifikasi Dokumen Berita Kejadian Berbahasa Indonesia dengan Algoritma Single Pass Clustering,” Proceeding of Seminar on Intelligent Technology and Its Applications (SITIA), Surabaya, 2002.
D. Y. Liliana, A. Hardianto dan M. Ridok, “Indonesian News Classification using Support Vector Machine,” World Academy of Science, Engineering and Technology, vol. 57, pp. 767-770, 9 2011.
Ambarwti dan E. Winarko, “Pengelompokan Berita Indonesia Berdasarkan Histogram Kata Menggunakan Self-Organizing Map,” IJCCS, vol. VIII, no. 1, p. 101, 2014.
Z. Oren, E. Oren, M. Omid dan R. M. Karp, “Fast and Intutive Clustering of Web Document,” Proceedings of the Third International Conference on Knowledge Discovery and Data Mining, Newport Beach, CA, 1997.
M. S. K. Khaled M. Hammouda, “Efficient Phrase-Based Document Indexing for Web Document Clustering,” IEEE Transactions On Knowledge and Data Enginering, vol. 16, no. 10, pp. 1279-1296, 2004.
H. Chim dan X. Deng, “Efficient Phrase-Based Document Similarity for Clustering,” IEEE Transactions on Knowledge and Data Engineering, vol. 20, no. 9, pp. 1217-1229, 2008.
H. A. Putranto, O. Setyawati dan Wijono, “Pengaruh Phrase Detection dengan POS-Tagger terhadap Akurasi Klasifikasi Sentimen menggunakan SVM,” Jurnal Nasional Teknik Elektro dan Teknologi Informasi, vol. 5, no. 4, pp. 252-259, 2016.
M. Bakhshi, M.-R. Feizi-Derakhshi dan E. Zafarani, “Review and Comparison between Clustering Algorithms with Duplicate Entities Detection Purpos,” International Journal of Computer Science & Emerging Technologies , vol. 3, no. 3, 2012.
O. A. Abbas, “Comparisons Between Data Clustering Algorithm,” Fourth International Conference on Engineering and Technology Research, vol. 5, no. 3, 2008.
F. Gorunescu, Data Mining : Concepts, Models and Techniques, vol. 12, Berlin: Springer, 2011.
P. B. S. Wiguna dan B. S. Hantono, “Peningkatan Algoritma Porter Stemmer Bahasa Indonesia berdasarkan Metode Morfologi dengan Mengaplikasikan 2 Tingkat Morfologi dan Aturan Kombinasi Awalan dan Akhiran,” Jurnal Nasional Teknik Elektro dan Teknologi Informasi, vol. 2, no. 2, 2013.
C. D. Manning, P. Raghavan dan H. Schütze, An Introduction to Information Retrieval, Cambridge, England: Cambridge UniversityPress , 2009.
K. Baker, "Singular value decomposition tutorial", Columbus, Ohio: The Ohio State University, 2005.
J. Leskovec , A. Rajaraman dan J. D. Ullman , Mining of Massive Datasets, Cambridge, England: Cambridge University Press, 2014.
D. T. Larose, Discovering Knowledge Data : An Introduction to Data Mining, New Jersey: John Willey & Sons, Inc., 2005.
M. A. Muslim, M. Ishikawa dan T. Furukawa, “Task Segmentatioin in a Mobile Robot by mnSOM and Clustering With Spatio-Temporal Contiguity,” International Conference on Neural Information Processing, Berlin, Heidelberg, 2007.
K. Pang, “Self-Organizing Maps,” 2003. [Online]. Available:
https://www.cs.hmc.edu/~kpang/nn/som.html. [Diakses 14 Mei 2015].
© Jurnal Nasional Teknik Elektro dan Teknologi Informasi, under the terms of the Creative Commons Attribution-ShareAlike 4.0 International License.