Pengukuran Badan Ikan Berupa Estimasi Panjang, Lebar, dan Tinggi Berdasarkan Visual Capture
Abstract
Currently, fish measurement process is done manually using the gauge which can cause inappropriate, ineffective result, and requires long time to finish, especially for a great amount of fish. Therefore, an automatic fish body measurement technique in the form of estimation of length, width, and height of fish based on visual capture is needed to facilitate fish body measurement to become more effective and efficient. This research uses five samples of fish in measuring length, width, and height manually to obtain the average data/value as the calibration of reference value for calculation process in the system and to be stored in the database. The stages begin with capturing fish image using a digital camera. Then, preprocessing stage was carried out to get the grayscale image of the fish. The object of the grayscale image was then segmented to separate the important and unimportant part of the object. Lastly, feature extraction process of the fish body from the calibration average value was carried out, and the estimated value of length, width, and height of fish are obtained automatically. The results show that the automatic measurement technique of fish body based on visual capture was able to produce the truth degree of accuracy of 80% to 95%.
References
Chomtip Pornpanomchai, Benjamaporn Lurstwut, Pimprapai Leerasakultham, dan Waranat Kitiyanan, “Shape- and Texture-Based Fish Image Recognition System”, Kasetsart Journal - Natural Science, 47(4), hal. 624-634, January 2013.
Protokol Pengumpulan Data untuk Perikanan Handline Skala Kecil Indonesia (September, 2015). USAID-INDONESIA. [Online], http://ifish.id/?q=id/content/library-protocol, tanggal akses: 13 Juli 2017.
Mulfizar, dkk. “Hubungan panjang berat dan faktor kondisi tiga jenis ikakn yang tertangkap di perairan Kuala Gigieng, Aceh Besar, Provinsi Aceh”, Jurnal Depik, 1(1):1 – 9, April 2012. ISSN 2089 – 7790.
Muchlisin, Z.A., M. Musman, M.N. Siti-Azizah, “Length-weight relationships and condition factors of two threatened fishes, Rasbora tawarensis and Poropuntius tawarensis, endemic to Lake Laut Tawar, Aceh Province, Indonesia”, Journal of Applied Ichthyology, 26 hal. 949-953, 2010.
Milfa Yetri, Yusnidah dan Mukhlis Ramadhan, “Analisis Identifikasi Pola Warna Ikan Koi Menggunakan Metode Sobel Edge Detection dalam Karakteristik Citra Sharpening”, Jurnal Saintikom, Vol. 14, No. 1, Januari 2015.
Mamta Juneja, Parvinder Singh Sandhu, “Performance Evaluation of Edge Detection Techniques for Images in Spatial Domain”, International Journal of Computer Theory and Engineering, Vol. 1, No. 5, December, 2009
Bernd Jahne, Digital Image Processing, 6th ed. Germany: Springer, 2005.
Oskar Andersson, Steffany Reyna Marquez, “A comparison of object detection algorithms using unmanipulated testing images”, Degree Project in Computer Science DD143X, Examensarbete Teknik, Grundnivå, 15 Hp , Stockholm Sverige 2016.
Tony Lindeberg, “Feature Detection with Automatic Scale Selection”, International Journal of Computer Vision, 30(2) hal. 79-116, 1998.
Kaspers, Anne. Blob Detection. Biomedical Image Sciences, Image Sciences Institute, UMC Utrecht, 2011.
Pujiyanta, Ardi. 2007. Komputasi Numerik dengan Matlab. Yogyakarta: Graha Ilmu.
Islamadina, Raihan, dkk., “Estimasi Panjang dan Lebar Ikan
Berdasarkan Visual Capture”, Prosiding Seminar Nasional dan Exppo Teknik Elektro ke-6 (SNETE VI) 2017, hal 97-101, (ISSN: 2088-9984), Banda Aceh, 18 Oktober 2017.
© Jurnal Nasional Teknik Elektro dan Teknologi Informasi, under the terms of the Creative Commons Attribution-ShareAlike 4.0 International License.