Klasifikasi Interaksi Kampanye di Media Sosial Menggunakan Naïve Bayes Kernel Estimator

  • Aryo Nugroho Institut Teknologi Sepuluh Nopember
  • Rumaisah Hidayatillah Universitas Narotama
  • Surya Sumpeno Institut Teknologi Sepuluh Nopember
  • Mauridhi Hery Purnomo Institut Teknologi Sepuluh Nopember
Keywords: Pola Interaksi, Klasifikasi, Naive Bayes, Kernel Estimator

Abstract

The development of technology also influences changes in campaign patterns. Campaign activities are part of the process of Election of Regional Heads. The aim of the campaign is to mobilize public participation, which is carried out directly or through social media. Social media becomes a channel for interaction between candidates and their supporters. Interactions that occur during the campaign period can be one indicator of the success of the closeness between voters and candidates. This study aims to get the pattern of campaign interactions that occur on Twitter social media channels. This interaction pattern is classified as a model in measuring the success of campaigns on social media. The research begins with obtaining data through the data retrieval process using the API feature provided by Twitter. Furthermore, pre-processing is carried out before data can be processed in an algorithmic method. This stage is done to improve data quality so as to improve accuracy. Naive Bayes Classifier was chosen because of a simple procedure, then Kernel Estimator (KE) was used to improve performance. The use of naive Bayes Kernel Estimator can improve model performance from 76.74% to 80.14%. Testing models with split percentage methods on several combinations get satisfactory results.

References

W. Budiharto dan M. Meiliana, “Prediction and Analysis of Indonesia Presidential Election from Twitter Using Sentiment Analysis,” J. Big Data, Vol. 5, No. 1, hal. 51-60, Dec. 2018.

P. Wang, W. He, dan J. Zhao, “A Tale of Three Social Networks: User Activity Comparisons across Facebook, Twitter, and Foursquare,” IEEE Internet Comput., Vol. 18, No. 2, hal. 10–15, Mar. 2014.

(2017) “Detecting Stress Based on Social Interactions in Social Networks - IEEE Journals & Magazine,” [Online]. https://ieeexplore.ieee.org/document/7885098, tanggal akses: 22-Nov-2018.

(2016) “An Agent Based Model of Spread of Competing Rumors Through Online Interactions on Social Media - IEEE Conference Publication.” [Online], https://ieeexplore.ieee.org/document/7408413. tanggal akses: 22-Nov-2018.

S.-J. Bang dan W. Wu, “Naive Bayes Ensemble: A New Approach to Classifying Unlabeled Multi-Class Asthma Subjects,” 2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 2016, hal. 460–465.

M.N. Al-Azam, M.M. Achlaq, A. Nugroho, A.G. Sooai, dan A. Winaya, “Broadcasting the Status of Plant Growth Chamber using Bluetooth Low Energy,” MATEC Web Conf., Vol. 164, hal. 1-11, 2018.

A.G. Sooai, A. Nugroho, M.N.A. Azam, S. Sumpeno, danM.H. Purnomo, “Virtual Artifact: Enhancing Museum Exhibit Using 3D Virtual Reality,” 2017 TRON Symposium (TRONSHOW), 2017, hal. 1–5.

C. Kartiko dan G.B. Hertantyo, “Peningkatan Kualitas Aplikasi Pemantau Media Sosial dan Media Daring Menggunakan Metode WebQEM,” J. Nas. Tek. Elektro Dan Teknol. Inf. JNTETI, Vol. 7, No. 2, hal. 144-149, 2018.

K. Michael, “Are You Addicted to Your Smartphone, Social Media, dan More?: The New AntiSocial App Could Help,” IEEE Consum. Electron. Mag., Vol. 6, No. 4, hal. 116–121, Oct. 2017.

K. Kandhway dan J. Kuri, “Campaigning in Heterogeneous Social Networks: Optimal Control of SI Information Epidemics,” IEEEACM Trans. Netw., Vol. 24, No. 1, hal. 383–396, Feb. 2016.

J. Saldivar, C. Rodríguez, F. Daniel, F. Casati, dan L. Cernuzzi, “On the (In)effectiveness of the Share/Tweet Button: Idea Management for Civic Participation,” IEEE Internet Comput., Vol. 21, No. 5, hal. 38–47, 2017.

I. I. G. şen, “Internet Freedom and Political Participation in Turkey: Legal Framework and Practice,” 2014 First International Conference on eDemocracy eGovernment (ICEDEG), 2014, hal. 105–108.

D. Opazo, M. Wolff, dan M.J. Araya, “Imagination and the Political in Design Participation,” Des. Issues, Vol. 33, No. 4, hal. 73–82, Oct. 2017.

D. Gayo-Avello, “Social Media, Democracy, and Democratization,” IEEE Multimed., Vol. 22, No. 2, hal. 10–16, Apr. 2015.

K. Gorkovenko, N. Taylor, dan J. Rogers, “Social Printers: A Physical Social Network for Political Debates,” Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, 2017, hal. 2269–2281.

K. Lee, J. Mahmud, dan J. Chen, “Who Will Retweet This? Detecting Strangers from Twitter to Retweet Information,” ACM Trans. Intell. Syst. Technol. TIST - Surv. Pap. Regul. Pap. Spec. Issue Soc. Media Process., Vol. 8, No. 6, hal. 1-10, Sep. 2017.

M. Glenski dan T. Weninger, “Rating Effects on Social News Posts and Comments,” ArXiv160606140 [cs.SI], Jun. 2016.

H. Hao, R. Padman, B. Sun, dan R. Telang, “Examining the Social Influence on Information Technology Sustained Use in a Community Health System: A Hierarchical Bayesian Learning Method Analysis,” 2014 47th Hawaii International Conference on System Sciences (HICSS), 2014, hal. 2751–2758.

Y. Chen, J. Hu, H. Zhao, Y. Xiao, dan P. Hui, “Measurement and Analysis of the Swarm Social Network With Tens of Millions of Nodes,” IEEE Access, Vol. 6, hal. 4547–4559, 2018.

S. Servia-Rodríguez, A. Fernández-Vilas, R.P. Díaz-Redondo, dan J.J. Pazos-Arias, “Inferring Contexts From Facebook Interactions: A Social Publicity Scenario,” IEEE Trans. Multimed., Vol. 15, No. 6, hal. 1296–1303, Oct. 2013.

M.Y. Nejad, M. Hosseinzadeh, dan M. Mohammadi, “Hijab in Twitter: Advocates and Critics: A Content Analysis of Hijab-Related Tweets,” IEEE Technol. Soc. Mag., Vol. 37, No. 2, hal. 46–51, Jun. 2018.

S. Ahmed dan M.M. Skoric, “My Name Is Khan: The Use of Twitter in the Campaign for 2013 Pakistan General Election,” 2014 47th Hawaii International Conference on System Sciences (HICSS), 2014, hal. 2242–2251.

H. Nurrahmi, R. Wijayanti, A.F. Rozie, dan A. Arisal, “Twitter Data Transformation for Network Visualization Based Context Analysis,” 2018 International Conference on Information and Communications Technology (ICOIACT), 2018, hal. 525–530.

T. Busjahn, R. Bednarik, dan C. Schulte, “What Influences Dwell Time During Source Code Reading?: Analysis of Element Type and Frequency As Factors,” Proceedings of the Symposium on Eye Tracking Research and Applications, 2014, hal. 335–338.

Z. Sari, M. Sarosa, dan S. Suhari, “‘Si Tole’ Chatterbot untuk Melatih Rasa Percaya Diri Menggunakan Naive Bayes Classification,” J. Nas. Tek. Elektro Dan Teknol. Inf. JNTETI, Vol. 7, No. 1, hal. 64-71, 2018.

Z.L. Xiang, X.R. Yu, A.W.M. Hui, dan D.K. Kang, “Novel Naive Bayes based on Attribute Weighting in Kernel Density Estimation,” 2014 Joint 7th International Conference on Soft Computing and Intelligent Systems (SCIS) and 15th International Symposium on Advanced Intelligent Systems (ISIS), 2014, hal. 1439–1442.

Published
2019-05-31
How to Cite
Aryo Nugroho, Rumaisah Hidayatillah, Surya Sumpeno, & Mauridhi Hery Purnomo. (2019). Klasifikasi Interaksi Kampanye di Media Sosial Menggunakan Naïve Bayes Kernel Estimator. Jurnal Nasional Teknik Elektro Dan Teknologi Informasi, 8(2), 107-114. Retrieved from https://jurnal.ugm.ac.id/v3/JNTETI/article/view/2591
Section
Articles