Deteksi Berita Hoaks Berbahasa Indonesia Menggunakan 1-Dimensional Convolutional Neural Network

  • Muhammad Zuama Al Amin Program Studi Teknologi Informasi, Fakultas Ilmu Komputer, Universitas Jember, Jember, Jawa Timur 68121, Indonesia
  • Muhammad Ariful Furqon Program Studi Informatika, Fakultas Ilmu Komputer, Universitas Jember, Jember, Jawa Timur 68121, Indonesia
  • Dwi Wijonarko Program Studi Teknologi Informasi, Fakultas Ilmu Komputer, Universitas Jember, Jember, Jawa Timur 68121, Indonesia

Abstract

Kemajuan teknologi informasi yang pesat telah memfasilitasi penyebaran informasi secara global, tetapi juga meningkatkan prevalensi berita hoaks, khususnya di Indonesia. Berita hoaks memiliki potensi untuk menciptakan disinformasi yang dapat memengaruhi opini publik, stabilitas sosial, dan keamanan. Oleh karena itu, diperlukan solusi berbasis teknologi yang efektif untuk mendeteksi dan mengidentifikasi hoaks atau berita palsu. Penelitian ini bertujuan untuk mengembangkan dan mengoptimalkan model 1-dimentional convolutional neural network (1D CNN) guna mendeteksi berita hoaks dengan tingkat akurasi yang tinggi. Dataset yang digunakan terdiri atas 12.151 artikel, yang mencakup 5.276 berita valid dan 6.875 berita hoaks, yang diperoleh dari sumber tepercaya serta platform antihoaks. Tahapan prapemrosesan teks meliputi pembersihan data, case folding, penghapusan tanda baca, penghapusan angka, dan penghapusan stopword.  Data tekstual selanjutnya diproses melalui tahapan tokenisasi dan padding untuk persiapan pelatihan model. Arsitektur 1D-CNN yang diusulkan mengintegrasikan lapisan embedding, conv1d, batch normalization, globalmaxpooling1d, dense, dan dropout layer, untuk meningkatkan kemampuan generalisasi serta mengurangi risiko overfitting. Model dilatih menggunakan optimizer Adam dan  evaluasi kinerja menggunakan 10-fold cross-validation. Hasil eksperimen menunjukkan bahwa model menghasilkan rata-rata akurasi 97,74%, presisi 97,75%, recall 97,74%, dan F1-score 97,73%. Model yang dikembangkan mampu mengungguli metode sebelumnya, seperti kombinasi convolutional neural network- bidirectional long short – term memory neural network (CNN-BiLSTM), gated recurrent unit (GRU), dan metode konvensional seperti naïve Bayes atau support vector machine (SVM), baik dari segi akurasi maupun efisiensi waktu pelatihan. Penelitian ini  menunjukkan bahwa model memiliki kemampuan yang andal dalam mengidentifikasi berita hoaks, baik dari segi tingkat deteksi yang akurat maupun konsistensi kinerja.

References

B.P. Nayoga, R. Adipradana, R. Suryadi, and D. Suhartono, “Hoax analyzer for Indonesian news using deep learning models,” Procedia Comput. Sci., vol. 179, pp. 704–712, Feb. 2021, doi: 10.1016/j.procs.2021.01.059.

Mukhlizar and F. Yuliani, “Hoax dan tanggung jawab sosial pengguna sosial media,” Kaganga, J. Pendidik. Sej. Ris. Sos. Hum., vol. 6, no. 2, pp. 461–466, Jul.-Dec. 2023, doi: 10.31539/kaganga.v6i2.7695.

T.C. Praha, Widodo, and Murien Nugraheni, “Indonesian fake news classification using transfer learning in CNN and LSTM,” JOIV, Int. J. Inform. Visualization, vol. 8, no. 3, pp. 1213–1220, Sep. 2024, doi: 10.62527/joiv.8.2.2126.

D. Amelia et al., “Variabel yang memengaruhi kemampuan literasi membaca siswa Indonesia: Analisis berdasarkan pendekatan MARS,” J. Pendidik. Kebud., vol. 9, no. 2, pp. 205–217, Dec. 2024, doi: 10.24832/jpnk.v9i2.4966.

J.C.S. Reis et al., “Supervised learning for fake news detection,” IEEE Intell. Syst., vol. 34, no. 2, pp. 76–81, Mar./Apr. 2019, doi: 10.1109/MIS.2019.2899143.

A.D. Safira and E.B. Setiawan, “Hoax detection in social media using bidirectional long short-term memory (Bi-LSTM) and 1 dimensional-convolutional neural network (1D-CNN) methods,” in 2023 11th Int. Conf. Inf. Commun. Technol. (ICoICT), 2023, pp. 355–360, doi: 10.1109/ICoICT58202.2023.10262528.

M.F. Mridha et al., “A comprehensive review on fake news detection with deep learning,” IEEE Access, vol. 9, pp. 156151–156170, Nov. 2021, doi: 10.1109/ACCESS.2021.3129329.

M.G. Ayu, “Peneliti manfaatkan AI untuk deteksi berita palsu COVID-19.” Cloud Computing Indonesia. Access date: 20-Nov-2024. [Online]. Available: https://www.cloudcomputing.id/berita/peneliti-manfaatkan-ai-dalam-mendeteksi-berita-palsu

S. Kiranyaz et al., “1D convolutional neural networks and applications: A survey,” Mech. Syst. Signal Process., vol. 151, pp. 1–21, Apr. 2021, doi: 10.1016/j.ymssp.2020.107398.

R. Oshikawa, J. Qian, and W. Y. Wang, “A survey on natural language processing for fake news detection,” in Proc. 12th Lang. Resour. Eval. Conf., 2020, pp. 6086–6093.

M. Benedict and E.B. Setiawan, “Hoax detection on social media with convolutional neural network (CNN) and support vector machine (SVM),” in 2023 11th Int. Conf. Inf. Commun. Technol. (ICoICT), 2023, pp. 361–366, doi: 10.1109/ICoICT58202.2023.10262433.

X. Zhang, J. Zhao, and Y. LeCun, “Character-level convolutional networks for text classification,” in NIPS'15, Proc. 29th Int. Conf. Neural Inf. Process. Syst., 2015, pp. 649–657.

O.C.R. Rachmawati and Z.M.E. Darmawan, “The comparison of deep learning models for Indonesian political hoax news detection,” CommIT (Commun. Inf. Technol.) J., vol. 18, no. 2, pp. 123–135, Oct. 2024, doi: 10.21512/commit.v18i2.10929.

K.S. Nugroho, “Dasar text preprocessing dengan Python.” Medium. Access date: 20-Oct-2024. [Online]. Available: https://ksnugroho.medium.com/dasar-text-preprocessing-dengan-python-a4fa52608ffe

L. Hu, S. Wei, Z. Zhao, and B. Wu, “Deep learning for fake news detection: A comprehensive survey,” AI Open, vol. 3, pp. 133–155, Oct. 2022, doi: 10.1016/j.aiopen.2022.09.001.

J. Brownlee, “A gentle introduction to k-fold cross-validation.” Access date: 30-Oct-2024. [Online]. Available: https://machinelearningmastery.com/k-fold-cross-validation/

S. Narkhede , “Understanding confusion matrix.” Towards Datascience. Access date: 20-Oct-2024. [Online]. Available: https://towardsdatascience.com/understanding-confusion-matrix-a9ad42dcfd62

S.F.N. Azizah, H.D. Cahyono, S.W. Sihwi, and W. Widiarto, “Performance analysis of transformer based models (BERT, ALBERT and RoBERTa) in fake news detection,” in 2023 6th Int. Conf. Inf. Commun. Technol. (ICOIACT), 2023, pp. 425–430, doi: 10.1109/ICOIACT59844.2023.10455849.

M.A. Rosid et al., “Improving text preprocessing for student complaint document classification using Sastrawi,” in Int. Conf. Eng. Technol. Appl. Sci. (ICETsAS), 2020, pp. 1–6, doi: 10.1088/1757-899X/874/1/012017.

M.G. Pradana, “Penggunaan fitur wordcloud dan document term matrix dalam text mining,” J. Ilm. Inform., vol. 8, no. 1, pp. 38-43, Mar. 2020, doi: 10.33884/jif.v8i01.1838.

R. Egger, “Text representations and word embeddings,” in Applied Data Science in Tourism. Cham, Switzerland: Springer, 2022, pp. 335–361.

C. Garbin, X. Zhu, and O. Marques, “Dropout vs. batch normalization: An empirical study of their impact to deep learning,” Multimed. Tools Appl., vol. 79, no. 19–20, pp. 12777–12815, May 2020, doi: 10.1007/s11042-019-08453-9.

H. Kim and Y.S. Jeong, “Sentiment classification using convolutional neural networks,” Appl. Sci., vol. 9, no. 11, pp. 1–14, Jun. 2019, doi: 10.3390/app9112347.

D.M Merkulov and I.V. Oseledets, “Empirical study of extreme overfitting points of neural networks,” vol. 64, no. 12, pp. 1527-1534, Dec. 2019, doi: 10.1134/s1064226919120118.

Published
2025-05-28
How to Cite
Muhammad Zuama Al Amin, Muhammad Ariful Furqon, & Dwi Wijonarko. (2025). Deteksi Berita Hoaks Berbahasa Indonesia Menggunakan 1-Dimensional Convolutional Neural Network. Jurnal Nasional Teknik Elektro Dan Teknologi Informasi, 14(2), 161-169. https://doi.org/10.22146/jnteti.v14i2.19050