Studi Komparasi Kinerja Object-Relational Mapping Berdasarkan Implementasi Data Source Architectural Pattern

  • Muhammad Rezy Anshari Jurusan Teknik Elektro, Fakultas Teknik, Universitas Tanjungpura, Pontianak, Kalimantan Barat 78124, Indonesia
  • Redi Ratiandi Yacoub Jurusan Teknik Elektro, Fakultas Teknik, Universitas Tanjungpura, Pontianak, Kalimantan Barat 78124, Indonesia
  • Herry Sujaini Jurusan Teknik Elektro, Fakultas Teknik, Universitas Tanjungpura, Pontianak, Kalimantan Barat 78124, Indonesia
  • Bomo Wibowo Sanjaya Jurusan Teknik Elektro, Fakultas Teknik, Universitas Tanjungpura, Pontianak, Kalimantan Barat 78124, Indonesia
  • Eva Faja Ripanti Jurusan Teknik Elektro, Fakultas Teknik, Universitas Tanjungpura, Pontianak, Kalimantan Barat 78124, Indonesia
Keywords: ORM, Performance, Data Mapper, Active Record, Profiling

Abstract

Object-relational mapping (ORM) merupakan teknik mapping antara in-memory objects dan tabel pada basis data. ORM mengimplementasi data source architectural patterns (DSAP), di antaranya Data Mapper dan Active Record. Komparasi kinerja kedua pattern perlu dilakukan karena adanya indikasi perbedaan kinerja serta mengingat perannya yang signifikan terhadap proses bisnis sebuah sistem. Studi ini bertujuan melakukan komparasi dan analisis terhadap kinerja durasi eksekusi dan konsumsi memori secara kuantitatif serta fungsi-fungsi yang memengaruhinya pada ORM yang mengimplementasi Data Mapper dan Active Record. Doctrine (Data Mapper) dan Eloquent (Active Record) dijadikan sebagai objek studi. Profiling kinerja pada ORM dilakukan dalam bentuk library, tidak dibundel dalam framework. Profiling mencakup operasi create, read, update, and delete (CRUD) dan lookup berdasarkan metrik ukur tertentu serta dilakukan dengan variasi jumlah database record. Proses profiling diotomatisasi melalui script yang memanfaatkan kombinasi Xdebug dan Apache Benchmark. Analisis dilakukan dengan Kcachegrind dan Big-O Notation. Analisis menghasilkan grafik kinerja dan relative percentage difference serta kontribusi fungsi-fungsi terhadap kinerja. Hasil menunjukkan kinerja konsumsi memori Active Record unggul atas Data Mapper. Data Mapper unggul dalam kinerja durasi eksekusi pada sebagian besar kombinasi operasi dan metrik. Kelompok fungsi database transaction, object serialization, dan record retrieval merupakan kontributor terbesar terhadap kedua kinerja serta tambahan kelompok fungsi object and database synchronization untuk Active Record. Kompleksitas fungsi-fungsi kontributor terbesar pada Data Mapper lebih tinggi dibandingkan Active Record. Studi berikutnya dapat memanfaatkan konsep otomatisasi pada proses profiling dan mensubstitusi Xdebug sesuai kebutuhan bahasa pemrograman yang digunakan oleh ORM.

References

V. Sivakumar, T. Balachander, Logu, and R. Jannali, “Object relational mapping framework performance impact,” Turk. J. Comput. Math. Educ., vol. 12, no. 7, pp. 2516–2519, 2021 .

A.E. Güverci̇n and B. Avenoglu, “Performance analysis of object-relational mapping (ORM) tools in .NET 6 environment,” Bilişim Teknol. Derg., vol. 15, no. 4, pp. 453–465, Oct. 2022, doi: 10.17671/gazibtd.1059516.

G. Vial, “Lessons in persisting object data using object-relational mapping,” IEEE Softw., vol. 36, no. 6, pp. 43–52, Nov./Dec. 2019, doi: 10.1109/MS.2018.227105428.

M. Gorodnichev et al., “Exploring object-relational mapping (ORM) systems and how to effectively program a data access model,” PalArch’s J. Archaeol. Egypt/Egyptol., vol. 17, no. 3, pp. 615–627, Nov. 2020, doi: 10.48080/jae.v17i3.141.

A. Joshi and S. Kukreti, “Object relational mapping in comparison to traditional data access techniques,” Int. J. Sci. Eng. Res., vol. 5, no. 6, pp. 540–543, Jun. 2014.

M. Fowler, Patterns of Enterprise Application Architecture. Germany: Addison-Wesley, 2003.

T. Nguyen, “Elementary event storage,” Undergraduate thesis, Metropolia University of Applied Sciences, Helsinki, Finland, 2018.

A. Niarman, Iswandi, and A.K. Candri, “Comparative analysis of PHP frameworks for development of academic information system using load and stress testing,” Int. J. Softw. Eng. Comput. Sci., vol. 3, no. 3, pp. 424–436, Dec. 2023, doi: 10.35870/ijsecs.v3i3.1850.

P. Garbarz and M. Plechawska-Wójcik, “Comparative analysis of PHP frameworks on the example of Laravel and Symfony,” J. Comput. Sci. Inst., vol. 22, pp. 18–25, Mar. 2022, doi: 10.35784/jcsi.2781.

P.R. Chavan and S. Pawar, “Comparison study between performance of Laravel and other PHP frameworks,” IJRESM, vol. 4, no. 10, pp. 27–29, Oct. 2021.

M. Choina and M. Skublewska-Paszkowska, “Performance analysis of relational databases MySQL, PostgreSQL and Oracle using Doctrine libraries,” J. Comput. Sci. Inst., vol. 24, pp. 250–257, Sep. 2022, doi: 10.35784/jcsi.3000.

S. Holder, J. Buchan, and S.G. MacDonell, “Towards a metrics suite for object-relational mappings,” in Model-Based Softw. Data Integr., R.D. Kutsche and N. Milanovic, Eds. 2008, pp. 43–54, doi: 10.1007/978-3-540-78999-4_6.

M. Lorenz et al., “Object-relational mapping reconsidered,” in Proc. 50th Hawaii Int. Conf. Syst. Sci., 2017, pp. 4877–4886.

U. Ibrahim, J.B. Hayfron-Acquah, and F. Twum, “Comparative analysis of CodeIgniter and Laravel in relation to object-relational mapping, load testing and stress testing,” Int. Res. J. Eng. Technol. (IRJET), vol. 05, no. 02, pp. 1471–1475, Feb. 2018.

J.A. Yang and S.A. Aklani, “Performance analysis between interpreted language-based (Laravel) and compiled language-based (Gin) web frameworks,” Comput. Based Inf. Syst. J., vol. 11, no. 1, pp. 12–16, Mar. 2023, doi: 10.33884/cbis.v11i1.6583.

M. Laaziri, K. Benmoussa, S. Khoulji, and M.L. Kerkeb, “A comparative study of PHP frameworks performance,” Procedia Manuf., vol. 32, pp. 864–871, Apr. 2019, doi: 10.1016/j.promfg.2019.02.295.

H. Abutaleb, A. Tamimi, and T. Alrawashdeh, “Empirical study of most popular PHP framework,” in 2021 Int. Conf. Inf. Technol. (ICIT), 2021, pp. 608–611, doi: 10.1109/ICIT52682.2021.9491679.

D. Zmaranda et al., “Performance comparison of CRUD methods using NET object relational mappers: A case study,” Int. J. Adv. Comput. Sci. Appl. (IJACSA), vol. 11, no. 1, pp. 55–65, Jan. 2020, doi: 10.14569/IJACSA.2020.0110107.

S. Selvaraj, “Performance monitoring and debugging,” in Building Real-Time Marvels with Laravel. Berkeley, CA, USA: Apress, 2024, pp. 259–283.

A. Šimec, D. Lozić, and L.T. Golubić, “Benchmarking PHP modules,” Informatologia, vol. 50, no. 1/2, pp. 95–100, Jun. 2017.

B.A. Azad, P. Laperdrix, and N. Nikiforakis, “Less is more: Quantifying the security benefits of debloating web applications,” in SEC'19, Proc. 28th USENIX Conf. Secur. Symp., 2019, pp. 1697–1714.

A. Gocht, R. Schöne, and J. Frenzel, “Advanced Python performance monitoring with Score-P,” in Tools High Perform. Comput. 2018 / 2019, H. Mix et al., Eds. 2021, pp. 261–270, doi: 10.1007/978-3-030-66057-4_14.

J. Buša Jr., S. Hnatič, and O.V. Rogachevsky, “Performance analysis and optimization of MPDRoot,” in Proc. 9th Int. Conf. Distrib. Comput. Grid Technol. Sci. Educ. (GRID'2021), 2021, pp. 75–79, doi: 10.54546/MLIT.2021.22.70.001.

S. Bae, JavaScript Data Structures and Algorithms: An Introduction to Understanding and Implementing Core Data Structure and Algorithm Fundamentals. Berkeley, CA, USA: Apress, 2019.

I. Chivers and J. Sleightholme, “An introduction to algorithms and the big O notation,” in Introduction to Programming with Fortran. Cham, Switzerland: Springer, 2015, pp. 359–364.

A.J. Lockett, “Performance analysis,” in General-Purpose Optimization Through Information Maximization. Heidelberg, Germany: Springer, 2020, pp. 239–262.

F. Shamssoolari, “The examination of analyzing data by algorithm performance,” Int. J. Comput. Sci. Mob. Comput., vol. 8, no. 9, pp. 167–171, Sep. 2019.

Z. Xu, J. Zhu, L. Yang, and C. Zuo, “Mining the relationship between object-relational mapping performance anti-patterns and code clones,” in 35th Int. Conf. Softw. Eng. Knowl. Eng., 2023, pp. 1–6, doi: 10.18293/SEKE2023-161.

R.E. Miller, Optimization: Foundations and Applications. Canada: John Wiley & Sons, 2011.

J. Backhaus, “The Pareto principle,” Anal. Krit., vol. 2, no. 2, pp. 146–171, Nov. 1980, doi: 10.1515/auk-1980-0203.

Published
2025-05-28
How to Cite
Muhammad Rezy Anshari, Redi Ratiandi Yacoub, Herry Sujaini, Bomo Wibowo Sanjaya, & Eva Faja Ripanti. (2025). Studi Komparasi Kinerja Object-Relational Mapping Berdasarkan Implementasi Data Source Architectural Pattern. Jurnal Nasional Teknik Elektro Dan Teknologi Informasi, 14(2), 129-127. https://doi.org/10.22146/jnteti.v14i2.17315