5G Network Planning Using Macrocell and Piccocell Technology

  • Rivan Achmad Nugroho Electrical Engineering Study Program, Faculty of Engineering, Universitas of Tanjungpura, Pontianak, West Kalimantan 78124, Indonesia
  • Redy Ratiandi Yacoub Electrical Engineering Study Program, Faculty of Engineering, Universitas of Tanjungpura, Pontianak, West Kalimantan 78124, Indonesia
  • Herry Sujaini Informatics Engineering Study Program, Faculty of Engineering, Universitas of Tanjungpura, Pontianak, West Kalimantan 78124, Indonesia
  • Dedy Suryadi Electrical Engineering Study Program, Faculty of Engineering, Universitas of Tanjungpura, Pontianak, West Kalimantan 78124, Indonesia
  • Eva Faja Ripanti Informatics Engineering Study Program, Faculty of Engineering, Universitas of Tanjungpura, Pontianak, West Kalimantan 78124, Indonesia
Keywords: Macrocell, Picocell, 5G New Radio, SS-RSRP, SS-SINR, Atoll

Abstract

The city of Pontianak is projected to experience substantial growth in network demand, driven by the expansion of commercial hubs, educational institutions, tourism destinations, and essential public services. Under the current status quo, Pontianak lacks 5G network coverage, underscoring the necessity of implementing a comprehensive 5G network plan to support its urban development. This research conducted a detailed analysis of 5G network coverage and capacity planning, utilizing macrocell and picocell technologies to address the connectivity demands of an urban environment. Operating within the 3.5 GHz frequency band with a 100 MHz bandwidth, this research examined network requirements in the medium band spectrum. The results revealed that macrocell technology required 18 uplink and 23 downlink sites to cover an area of 107.8 km², while picocell technology demanded a denser infrastructure, comprising 351 uplink and 364 downlink sites across 90.72 km². Based on a five-year capacity projection for a population of 673,400, the macrocell technology will require 10 uplink and 22 downlink sites. On the contrary, picocell technology, which is more suitable for densely populated areas, will require 261 uplink and 263 downlink sites to serve a population of 423,881. Simulation results indicated that synchronization signal reference signal received power (SS-RSRP) and secondary synchronization signal received power (SS-SINR) values met or surpassed the established key performance indicators (KPI) for both technologies. This 5G network plan aligns with Pontianak’s smart city vision by enhancing connectivity, optimizing coverage, and delivering seamless user experiences, highlighting the adaptability of macrocell and picocell solutions in varied urban settings.

References

“Rencana Strategis Dinas Komunikasi dan Informatika Kota Pontianak 2020-2024,” Dinas Komunikasi dan Informasi Kota Pontianak, 2019.

U. Usman, Z. Zakaria, D. Setiawan, R. Winata, and M. Fakhrudin, “5G new radio (NR) network planning and analysis for Bandung city center,” in 2023 IEEE Asia Pac. Conf. Wirel. Mob. (APWiMob), 2023, pp. 7–12.

U.A. Ramadhani, W. Febrianti, and H. Najemi, “Analisis performansi sistem jaringan femtocell 5G berbasis simulasi,” Electrician, vol. 14, no. 1, pp. 1–6, Jan. 2020, doi: 10.23960/elc.v14n1.2124.

M.A. Nugraha, M.I. Nashiruddin, and P. Rahmawati, “An assessment of 5G NR network planning for dense urban scenario: Study case of Jakarta City,” in 2021 IEEE Int. Conf. Ind. 4.0 Artif. Intell. Commun. Technol. (IAICT), 2021, pp. 97–103.

A.L. Yusof, M.A.I Ab Rahim, N. Ya’acob, and N.S. Zainali, “Impact of transmitter and receiver distance of 3.5GHz networks channel propagation in line-of-sight (LOS) and non-line-of-sight (NLOS) environments,” J. Posit. Sch. Psychol., vol. 6, no. 3, pp. 8341–8358, Mar. 2022.

W. Bakhtiar, “Coverage planning 5G new radio pada frekuensi 2.3 GHZ dengan skema outdoor-to-outdoor line of sight di Kota Semarang,” Diploma thesis, Institut Teknologi Telkom Purwokerto, Purwokerto, Indonesia, 2021.

F.K. Karo, A. Hikmaturokhman, and M.A. Amanaf, “5G new radio (NR) network planning at frequency of 2.6 GHz in Golden Triangle of Jakarta,” in 2020 3rd Int. Semin. Res. Inf. Technol. Intell. Syst. (ISRITI), 2020, pp. 278–283.

G. Fahira, A. Hikmaturokhman, and A.R. Danisya, “5G NR planning at mmWave frequency: Study case in Indonesia industrial area,” in 2020 2nd Int. Conf. Ind. Elect. Electron., 2020, pp. 205–210.

D. Marya and A. Wahyudin, “Analisis perbandingan performa pada perancangan jaringan 5G new radio menggunakan frekuensi 3,5 dan 24 GHz di Kota Yogyakarta,” J. Elekt. Telekomun. Terap., vol. 9, no. 1, pp. 1199–1211, Jul. 2022, doi: 10.25124/jett.v9i1.5052.

H. Yuliana, F.M. Santoso, S. Basuki, and M.R. Hidayat, “Analisis model propagasi 3GPP TR38.900 untuk perencanaan jaringan 5G new radio (NR) pada frekuensi 2300 MHz di area urban,” Telekontran, J. Ilm. Telekomun. Kendali Elektron. Terap., vol. 10, no. 2, pp. 90–97, Oct. 2022, doi: 10.34010/telekontran.v10i2.8233.

P. Rahmawati, M.I. Nashiruddin, and M.A. Nugraha, “Capacity and coverage analysis of 5G NR mobile network deployment for Indonesia’s urban market,” in 2021 IEEE Int. Conf. Ind. 4.0 Artif. Intell. Commun. Technol. (IAICT), 2021, pp. 90–96.

Base station (BS) Radio Transmission and Reception (3GPP TS 38.104 Version 15.2.0 Release 15), ETSI TS 138 104 V15.2.0 (2018-07), European Telecommunications Standards Institute, Sophia Antipolis, France, 2018.

U.K. Usman, “Mengenal teknologi 5G,” in Conf. Inf. Technol. Inf. Syst. Elect. Eng. (CITISEE), 2017, pp. 245–348.

R.E. Rios, “5G network planning and optimization using atoll,” M.S. thesis, Universitat Politècnica de Catalunya, Barcelona, Spain, 2019.

I. Tomic, E. Bleakley, and P. Ivanis, “Predictive capacity planning for mobile networks-ML supported prediction of network performance and user experience evolution,” Electronics, vol. 11, no. 4, Feb. 2022, Art. no 626, doi: 10.3390/electronics11040626.

V.Y.K. Luong, R. Ngah, and C.T. Han, “Capacity estimation for 5G cellular networks,” TURCOMAT, vol. 12, no. 3, pp. 5876–5883, May 2022, doi: 10.17762/turcomat.v12i3.12684.

H.M. Ali, J. Liu, and W. Ejaz, “Planning capacity for 5G and beyond wireless networks by discrete fireworks algorithm with ensemble of local search methods,” EURASIP J. Wirel. Commun. Netw., vol. 2020, Sep. 2020, Art. no 185, doi: 10.1186/s13638-020-01798-y.

E.J. Oughton and Z. Frias, “The cost, coverage and rollout implications of 5G infrastructure in Britain,” Telecommun. Policy, vol. 42, no. 8, pp. 636–652, Sep. 2018, doi: 10.1016/j.telpol.2017.07.009.

E. Al Hakim, “Analisis implementasi 5G berdasarkan coverage area dengan metode planning by capacity,” J. Mediatek, vol. 1, no. 1, pp. 1–4, Jun. 2022, doi: 10.32832/Pendahuluan.

5G; Study on Channel Model for Frequencies from 0.5 to 100 GHz (3GPP TR 38.901 Version 14.0.0 Release 14), ETSI TR 138 901 V14.0.0 (2017-05), European Telecommunications Standards Institute, Sophia Antipolis, France, 2017.

5G; NR; Base Station (BS) Radio Transmission and Reception (3GPP TS 38.104 Version 15.5.0 Release 15), ETSI TS 138 104 V15.5.0 (2019-05), European Telecommunications Standards Institute, Sophia Antipolis, France, 2019.

Published
2025-05-28
How to Cite
Rivan Achmad Nugroho, Redy Ratiandi Yacoub, Herry Sujaini, Dedy Suryadi, & Eva Faja Ripanti. (2025). 5G Network Planning Using Macrocell and Piccocell Technology. Jurnal Nasional Teknik Elektro Dan Teknologi Informasi, 14(2), 121-128. https://doi.org/10.22146/jnteti.v14i2.16830