Mapping Dominant Emotion in Indonesian Compound Sentences Using Multinomial Naïve Bayes
Abstract
This study aimed at mapping Indonesian sentences into emotion classes based on the classification process in those sentences. The results of emotion mapping can be applied in various fields, such as production of animated films and games, analysis of facial expressions, human-computer interactions, and development of other expressive virtual characters, specifically to produce facial expressions that match the spoken sentences. The method used for the emotion mapping process was the text classification using multinomial naïve Bayes model that was accompanied by dominant boundary equation. Multinomial naïve Bayes model in the text classification is used to determine the types and the emotional intensity of Indonesian sentences, whereas dominant boundary equation iss used to determine the threshold in order to identify the dominant classes. The emotion classes used as references are six basic emotion classes according to Paul Ekman, i.e., happiness, sadness, anger, fear, disgust, and surprise. The experiment on the process of mapping emotions used Indonesian single and compound sentences. The experimental results show that the text classification using multinomial naïve Bayes model accompanied by dominant boundary equation can map compound sentences into several classes of dominant emotions.
References
World Population Prospects 2019, United Nations, 2019.
(2019) “Perkembangan Pariwisata Oktober 2019” [Online], https://www.bps.go.id/pressrelease/2019/12/02/1618/jumlah-kunjungan-wisman-ke-indonesia-oktober-2019-mencapai-1-35-juta-kunjungan-.html, tanggal akses: 01-Mar-2020.
(2019) “Tenaga Kerja Asing di RI Meroket 38%, Terbanyak dari China!” [Online], https://www.cnbcindonesia.com/news/20190908075511-4-97843/tenaga-kerja-asing-di-ri-meroket-38-terbanyak-dari-china, tanggal akses: 01-Mar-2020.
S. Widodo (2013) "Bahasa Indonesia Menuju Bahasa International" [Online], http://badanbahasa.kemdikbud.go.id/lamanbahasa/content/ bahasa-indonesia-menuju-bahasa-internasional, tanggal akses: 01-Mar-2020.
Aripin, H. Haryanto, dan S. Sumpeno, “A Realistic Visual Speech Synthesis for Indonesian Using a Combination of Morphing Viseme and Syllable Concatenation Approach to Support Pronunciation Learning,” Int. J. Emerg. Technol. Learn., Vol. 13, No. 8, hal. 19–37, 2018.
Arifin, Muljono, S. Sumpeno, dan M. Hariadi, “Towards Building Indonesian Viseme: A Clustering-Based Approach,” Proceeding - IEEE CYBERNETICSCOM 2013: IEEE International Conference on Computational Intelligence and Cybernetics, 2013, hal. 57–61.
Arifin, S. Sumpeno, M. Hariadi, dan H. Haryanto, “A Text-to-Audiovisual Synthesizer for Indonesian by Morphing Viseme,” Int. Rev. Comput. Softw., Vol. 10, No. 11, hal. 1149–1156, Nov. 2015.
Arifin, S. Sumpeno, Muljono, dan M. Hariadi, “A Model of Indonesian Dynamic Visemes from Facial Motion Capture Database Using a Clustering-Based Approach,” IAENG Int. J. Comput. Sci., Vol. 44, No. 1, hal. 41–51, 2017.
H. Haryanto dan Aripin, “A Finite State Machine Model to Determine Syllables of Indonesian Text,” 2019 1st International Conference on Cybernetics and Intelligent System (ICORIS), 2019, hal. 238–241.
S.S.T.W. Sasangka, Seri Penyuluhan Bahasa Indonesia: Kalimat, Jakarta, Indonesia: Pusat Pembinaan dan Pemasyarakatan Badan Pengembangan dan Pembinaan Bahasa Kementerian Pendidikan dan Kebudayaan, 2014.
N.H. Frijda, “Moods, Emotion Episodes, and Emotions,” dalam Handbook of Emotions, M. Lewis dan J.M. Haviland, Eds., New York, USA: Guilford Press, 1993, hal. 381–403.
P. Ekman dan D. Cordaro, “What is Meant by Calling Emotions Basic,” Emot. Rev., Vol. 3, No. 4, hal 364–370, Okt. 2011.
M. Arief, M.I. Wardhana, S. Sumpeno, dan M. Hariadi, “Emotion Expression of Three Dimensional Face Model Using Naive Bayes and Fuzzy Logic,” Int. J. Comput. Sci. Netw. Secur., Vol. 10, No. 5, hal. 208–214, 2010.
J.E. Prawitasllri, “Mengenal Emosi Melalui Komunikasi Nonverbal,” Bul. Psikol., Vol. 3, No. 1, hal. 27–43, 2016.
E. Martiana, R.Y. Hakkun, N. Rosyid M., dan M. Firodh, “Machine Learning dalam Program Chatting untuk Merespon Emosi Teks Berbahasa Indonesia Menggunakan Text Mining dan Naïve Bayes,” The 13th Industrial Electronics Seminar 2011 (IES 2011), 2011, hal. 325–330.
Arifin, “Classification of Emotions in Indonesian Text using K-NN Method,” Int. J. Inf. Electron. Eng., Vol. 2, No. 6, hal. 899–903, 2012.
R. Sitorus dan H.S. Dachlan, “Analisis Pengaruh Frasa pada Deteksi Emosi Dari Teks Menggunakan Vector Space Model,” J. EECCIS, Vol. 11, No. 1, hal. 41–47, 2017.
M.C. Noviardini, A.B. Osmond, dan C. Setianingsih, “Klasifikasi Emosi pada Lirik Lagu menggunakan Metode Naïve Bayes Classifier,” e-Proceeding of Engineering, Vol. 5, No. 3, hal. 6187–6194, 2018.
A. Librian (2015) “High Quality Stemmer Library for Indonesian Language (Bahasa)” [Online], https://github.com/sastrawi/sastrawi, tanggal akses: 23-Apr-2020.
A. Juan dan H. Ney, “Reversing and Smoothing the Multinomial Naive Bayes Text Classifer,” Proceedings of the 2nd Int. Workshop on Pattern Recognition in Information Systems (PRIS 2002), 2002, hal. 200–212.
J. Bai dan J.-Y. Nie, “Using Language Models for Text Classification,” Proc. of the Asia Information Retrieval Symposium, 2004, hal. 1–6.
© Jurnal Nasional Teknik Elektro dan Teknologi Informasi, under the terms of the Creative Commons Attribution-ShareAlike 4.0 International License.