Design of trajectory tracking control for an differential drive wheeled mobile robot
Abstract
Differential drive wheeled mobile robots (DDWMR) is a class of mobile robots which has been used in various applications due to its mobile abilities. One important issue in the development of DDWMR is regarding the design of control methods to ensure the DDWMR can move autonomously from initial to final poses. The main challenge in such an issue is the need to design a controller which respects the nonholonomic constraint of DDWMR movements. To address such a challenge, this paper proposes a control method which combines techniques in smooth reference trajectory generation and Lyapunov-based tracking control designs. In the proposed method, a reference trajectory that is represented as polynomial function is first generated to connect the initial and final poses based on some waypoints information between them. A feedback control law based on Lyapunov’s stability method is then design to help control the DDWMR in tracking the generated reference trajectory with minimum error. Numerical simulation results are given to illustrate the effectiveness of the proposed method,
References
S.G. Tzafestas, Introduction to Mobile Robot Control, London, England: Elsevier, 2013.
G. Klancar, A. Zdesar, dan S. Blazic, Wheeled Mobile Robotics: From Fundamentals towards Autonomous Systems, London, England: Butterworth-Heinemann, 2017.
J.L. Avendaño-Juárez, V.M. Hernández-Guzmán, dan R. Silva-Ortigoza, “Velocity and Current Inner Loops in a Wheeled Mobile Robot,” Adv. Robot., Vol. 24, No. 8-9, hal. 1385–1404, 2010.
J.R. Garcı́a-Sánchez, S. Tavera-Mosqueda, R. Silva-Ortigoza, V.M. Hernández-Guzmán, J. Sandoval-Gutiérrez, M. Marcelino-Aranda, H. Taud, dan M. Marciano-Melchor, “Robust Switched Tracking Control for Wheeled Mobile Robots Considering the Actuators and Drivers,” Sensors, Vol. 18, No. 12, hal. 1-21, 2018.
C. Liu, J. Gao, dan D. Xu, “Lyapunov-based Model Predictive Control for Tracking of Nonholonomic Mobile Robots Under Input Constraints,” Int. J. Control Autom. Syst., Vol. 15, hal. 2313–2319, 2017.
K.R. Simba, N. Uchiyama, dan S. Sano, “Real-Time Smooth Trajectory Generation for Nonholonomic Mobile Robots using Bézier Curves,” Robot. Com.-Int. Manuf., Vol. 41, hal. 31–42, 2016.
C.M. Sanchez, J.R.G. Sanchez, C.Y.S. Cervantes, R.S. Ortigoza, V.M.H. Guzman, J.N.A. Juarez, dan M.M. Aranda, “Trajectory Generation for Wheeled Mobile Robots via Bézier Polynomials,” IEEE Lat. Am. Trans., Vol. 14, No. 11, hal. 4482–4490, 2016.
J. Mu, X.-G. Yan, S.K. Spurgeon, dan Z. Mao, “Nonlinear Sliding Mode Control of a Two-Wheeled Mobile Robot System,” Int. J. Model. Identif. Control., Vol. 27, No. 2, hal. 75–83, 2017.
J.R. Garcı́a-Sánchez, R. Silva-Ortigoza, S. Tavera-Mosqueda, C. Márquez-Sánchez, V.M. Hernández-Guzmán, M. Antonio-Cruz, G. Silva-Ortigoza, dan H. Taud, “Tracking Control for Mobile Robots Considering the Dynamics of All Their Subsystems: Experimental Implementation,” Complexity, Vol. 2017, hal. 1-18, 2017.
R.S. Ortigoza, J.R.G. Sanchez, V.M.H. Guzman, C.M. Sanchez, dan M.M. Aranda, “Trajectory Tracking Control for a Differential Drive Wheeled Mobile Robot Considering the Dynamics Related to Actuators and Power Stage,” IEEE Lat. Am. Trans., Vol. 14, No. 2, hal. 657–664, 2016.
D. Huang, J. Zhai, W. Ai, dan S. Fei, “Disturbance Observer-based Robust Control for Trajectory Tracking of Wheeled Mobile Robots,” Neurocomputing, Vol. 198, hal. 74–79, 2016.
S. Roy dan I.N. Kar, “Adaptive Robust Tracking Control of a Class of Nonlinear Systems with Input Delay,” Nonlinear Dyn., Vol. 85, No. 2, hal. 1127–1139, 2016.
Y. Kim dan B.K. Kim, “Time-Optimal Trajectory Planning Based on Dynamics for Differential-Wheeled Mobile Robots with a Geometric Corridor,” IEEE Trans. Ind. Electron., Vol. 64, No. 7, hal. 5502–5512, 2017.
C.-L. Hwang dan W.-L. Fang, “Global Fuzzy Adaptive Hierarchical Path Tracking Control of a Mobile Robot with Experimental Validation,” IEEE Trans. Fuzzy Syst., Vol. 24, No. 3, hal. 724–740, 2015.
T. Fukao, H. Nakagawa, dan N. Adachi, “Adaptive Tracking Control of a Nonholonomic Mobile Robot,” IEEE Trans. Robot Autom., Vol. 16, No. 5, hal. 609–615, 2000.
Z. Peng, G. Wen, S. Yang, dan A. Rahmani, “Distributed Consensusbased Formation Control for Nonholonomic Wheeled Mobile Robots Using Adaptive Neural Network,” Nonlinear Dyn., Vol. 86, No.1, hal. 605–622, 2016.
M. Abdelwahab, V. Parque, A.M.R. Fath Elbab, A.A. Abouelsoud, dan S. Sugano, “Trajectory Tracking of Wheeled Mobile Robots using Z-Number Based Fuzzy Logic,” IEEE Access, Vol. 8, hal. 18426–18441, 2020.
H.M. Wu dan M. Karkoub, “Hierarchical Fuzzy Sliding-Mode Adaptive Control for the Trajectory Tracking of Differential-Driven Mobile Robots,” Int. J. Fuzzy Syst., Vol. 21, No. 1, hal. 33–49, 2019.
T.Q. Khai dan Y.J. Ryoo, “Design of Adaptive Kinematic Controller Using Radial Basis Function Neural Network for Trajectory Tracking Control of Differential-Drive Mobile Robot,” Int J. Fuzzy Log. Intell. Syst., Vol. 19, No. 4, hal. 349–359, 2019.
T.Q. Khai, Y.J. Ryoo, W.R. Gill, dan D.Y. Im, “Design of Kinematic Controller Based on Parameter Tuning by Fuzzy Inference System for Trajectory Tracking of Differential-Drive Mobile Robot,” Int. J. Fuzzy Syst., Vol. 22, No. 6, hal. 1972–1978, 2020.
X. Wu, P. Jin, T. Zou, Z. Qi, H. Xiao, dan P. Lou, “Backstepping Trajectory Tracking Based on Fuzzy Sliding Mode Control for Differential Mobile Robots,” J. Intell. Robot Syst. Theory Appl., Vol. 96, No. 1, hal. 109–121, 2019.
Y. Guo, Z. Qu, dan J. Wang, “A New Performance-based Motion Planner for Nonholonomic Mobile Robots,” Proc. 3rd PerMIS, 2003, hal. 1-8.
Y. Guo, Y. Long, dan W. Sheng, “Global Trajectory Generation for Nonholonomic Robots in Dynamic Environments,” Proc. IEEE ICRA, 2007, hal. 1324–1329.
J.L. Junkins, J.R. Jancaitis, dan G.W. Miller, “Smooth Irregular Curves,” Photogramm. Eng. Rem. S., Vol. 38, No. 6, hal. 565-573, 1972.
Y. Kanayama, Y. Kimura, F. Miyazaki, dan T. Noguchi, “A Stable Tracking Control Method for an Autonomous Mobile Robot,” Proc. IEEE ICRA, 1990, hal. 384-389.
R. Fierro dan F.L. Lewis, “Control of a Nonholonomic Mobile Robot: Backstepping Kinematics into Dynamics,” Proc. 34th IEEE CDC, 1995, hal. 3805-3810.
S.G. Tzafestas, “Mobile Robot Control I: The Lyapunov-Based Method,” dalam Introduction to Mobile Robot Control, Oxford, UK: Elsevier, 2014, hal. 137–183.
© Jurnal Nasional Teknik Elektro dan Teknologi Informasi, under the terms of the Creative Commons Attribution-ShareAlike 4.0 International License.