Analysis of Public Sentiment on Vaccination in Efforts to Overcome the Covid-19 Pandemic

  • Brian Laurensz Universitas Kristen Satya Wacana
  • Eko Sediyono Universitas Kristen Satya Wacana
Keywords: Coronavirus, Indonesia, Vaccine, Sentiment, SVM, Naïve Bayes

Abstract

Coronavirus has become a global pandemic and has spread almost all over the world, including Indonesia. Many negative impacts resulted from the spread of COVID-19 in Indonesia, so the government made vaccination measures to reduce the rate of spread of COVID-19. Responses from the public to vaccination measures are quite diverse on social media Twitter. Some are supportive and some disagree. The purpose of this study is to find out how people's sentiment towards vaccination measures. The data used 845 tweets, using two keywords, "vaksinmerahputih" and "vaksinsinovac." The data is then divided into 253 training data and 592 testing data. The classification will use the SVM and Naïve Bayes methods. The classification result of the Naïve Bayes method received an average accuracy of 85.59%, while SMV of 84.41%. Sentiment results on Naïve Bayes method with keyword "vaksinsinovac" gets positive sentiment of 66% and negative sentiment of 34%, while "vaksinmerahputih" obtains 89% and 11% for positive and negative sentiment, respectively. SVM method with keyword "vaksinsinovac" gets 96% positive and 4% negative, while "vaksinmerahputih" obtains 98% positive and 2% negative. It can be concluded that the results of public sentiment towards vaccination measures received a positive response.

References

A.F. Watratan, A. Puspita B., dan D. Moeis, “Implementasi Algoritma Naive Bayes untuk Memprediksi Tingkat Penyebaran Covid-19 di Indonesia,” Journal of Applied Computer Science and Technology, Vol. 1, No. 1, hal. 7–14, 2020.

A. Susilo, C.M. Rumende, C.W. Pitoyo, W.D. Santoso, M. Yulianti, dkk., “Coronavirus Disease 2019: Tinjauan Literatur Terkini,” Jurnal Penyakit Dalam Indonesia, Vol. 7, No. 1, hal. 45-67, 2020.

V.N. Setiawan (2020) “Riset Medsos: Publik Lihat Negatif Kebijakan Pemerintah Atasi Corona,” [Online], https://katadata.co.id/agungjatmiko/berita/5ea5c764827c4/riset-medsos-publik-lihat-negatif-kebijakan-peemerintah-atasi-corona, tanggal akses: 30-Sep-2020.

V.K.S. Que, A. Iriani, dan H.D. Purnomo, “Analisis Sentimen Transportasi Online Menggunakan Support Vector Machine Berbasis Particle Swarm Optimization,” Jurnal Nasional Teknik Elektro dan Teknologi Informasi, Vol. 9, No. 2, hal. 162–170, 2020.

S. Hikmawan, A. Pardamean, dan S.N. Khasanah, “Sentimen Analisis Publik terhadap Joko Widodo terhadap Wabah Covid-19 Menggunakan Metode Machine Learning,” Jurnal Kajian Ilmiah, Vol. 20, No. 2, hal. 167–176, 2020.

N.D. Susanti, E. Sediyono, dan I. Sembiring, “Uji Perbandingan Akurasi Analisis Sentimen Pariwisata Menggunakan Algoritma Support Vektor Machine dan Naive Bayes,” Nusantara of Engineering, Vol. 3, No. 2, hal. 26–33, 2016.

H. Tuhuteru dan A. Iriani, “Analisis Sentimen Perusahaan Listrik Negara Cabang Ambon Menggunakan Metode Support Vector Machine dan Naive Bayes Classifier,” Jurnal Informatika: Jurnal Pengembangan IT, Vol. 3, No. 3, hal. 394–401, 2018.

A. D’Andrea, F. Ferri, P. Grifoni, dan T. Guzzo, “Approaches, Tools and Applications for Sentiment Analysis Implementation,” International Journal of Computer Applications, Vol. 125, No. 3, hal. 26–33, 2015.

R. Moraes, J.F. Valiati, dan W.P.G. Neto, “Document-level Sentiment Classification: An Empirical Comparison Between SVM and ANN,” Expert Systems with Applications, Vol. 40, No. 2, hal. 621–633, 2013.

N. Yunita, “Analisis Sentimen Berita Artis dengan Menggunakan Algoritma Support Vector Machine dan Particle Swarm Optimization,” Jurnal Sistem Informasi STMIK Antar Bangsa, Vol. 5, No. 2, hal. 104–112, 2016.

J.S. Chou, M.Y. Cheng, Y.W. Wu, dan A.D. Pham, “Optimizing Parameters of Support Vector Machine Using Fast Messy Genetic Algorithm for Dispute Classification,” Expert Systems with Applications, Vol. 41, No. 8, hal. 3955–3964, 2014.

A.S.H. Basari, B. Hussin, I.G.P. Ananta, dan J. Zeniarja, “Opinion Mining of Movie Review Using Hybrid Method of Support Vector Machine and Particle Swarm Optimization,” Procedia Engineering, Vol. 53, hal. 453–462, 2013.

H. Irsyad, A. Farisi, dan M.R. Pribadi, “Klasifikasi Opini Masyarakat terhadap Jasa ISP MyRepublic dengan Naïve Bayes,” Jurnal Nasional Teknik Elektro dan Teknologi Informasi (JNTETI), Vol. 8, No. 1, hal. 30-34, 2019.

E. Indrayuni, “Analisa Sentimen Review Hotel Menggunakan Algoritma Support Vector Machine Berbasis Particle Swarm Optimization,” Jurnal Evolusi, Vol. 4, No. 2, hal. 20–27, 2016.

Published
2021-05-27
How to Cite
Laurensz, B., & Eko Sediyono. (2021). Analysis of Public Sentiment on Vaccination in Efforts to Overcome the Covid-19 Pandemic. Jurnal Nasional Teknik Elektro Dan Teknologi Informasi, 10(2), 118-123. https://doi.org/10.22146/jnteti.v10i2.1421
Section
Articles