Asymmetric City Tour Optimization in Kediri Using Ant Colony System
Abstract
Kediri City is a stopover/transit city and has many potentials in the fields of tourism, education, and industry. Thus, the City of Kediri became one of the cities that are very likely to develop and be crowded. Therefore, it is required to model city tours in several primary fields of Kediri City. In the literature, determining the optimum route can be approached as a traveling salesman problem. However, traveling salesman problem model cannot be used to determine the city tour path as the distance among the point may vary. In this study, we used the concept of asymmetric traveling salesman problem to solve the city tour path. Furthermore, we used the ant colony system algorithm to solve this problem. The cases resolved in this study are the location of the tourism center, industrial center, and education center in Kediri City. The results show the ant colony system is capable of providing optimum tour route solutions, namely the city tourist route 34.65 km, the industrial route 21.19 km, and the school route 28 km.
References
A. Chusna (2017) ANTARA News Jawa Timur. [Online], https://jatim.antaranews.com/berita/245508/kediri-dapat-penghargaankota-cerdas-2017-dari-wapres-jusuf-kalla, tanggal akses: 28-Nov-2019.
M.D.A.C. Hasibuan dan Lusiana, “Pencarian Rute Terbaik pada Travelling Salesman Problem (TSP) Menggunakan Algoritma Genetika pada Dinas Kebersihan dan Pertamanan Kota Pekanbaru,” Jurnal SATIN - Sains dan Teknologi Informasi, Vol. 1, No. 1, hal. 35-46, Jun. 2015.
F. Glover, G. Gutin, A. Yeo, dan A. Zverovich, “Construction Heuristics for The Asymmetric TSP,” European Journal of Operational Research, Vol. 129, No. 3, hal. 555–568, Mar. 2001.
I.K. Gupta, S. Shakil, dan S. Shakil, “A Hybrid GA-PSO Algorithm to Solve Traveling Salesman Problem,” Computational Intelligence: Theories, Applications and Future Directions, Vol. 798, hal. 453–462, Agustus 2018.
X.H. Zhi, X.L. Xing, Q.X. Wang, L.H. Zhang, X.W. Yang, C.G. Zhou, dan Y.C. Liang, “A Discrete PSO Method for Generalized TSP Problem,” Proc. International Conference on Machine Learning and Cybernetics, 2004, hal. 2378-2383.
N. Chandekar dan M.J. Pillai, “In a Comparative Study of GA and ACO for Solving Travelling Salesman Problem,” International Journal of Mechanical and Production Engineering, Vol. 5, No. 11, hal. 34-37, Nov. 2017.
A.A. Ismail dan S. Herdjunanto, “Penerapan Algoritma Ant System dalam Menemukan Jalur Optimal pada Traveling Salesman Problem (TSP) dengan Kekangan Kondisi Jalan,” JNTETI, Vol. 1, No. 3, hal. 43-48, Nov. 2012.
A. Bajpai dan R. Yadav, “Ant Colony Optimization (ACO) for the Traveling Salesman Problem (TSP) Using Partitioning,” International Journal of Scientific & Technology Research, Vol. 4, No. 9, hal. 376-381, Sep. 2015.
B. Freisleben dan P. Merz, “Genetic Local Search Algorithm for Solving Symmetric and Asymmetric Traveling Salesman Problems,” Proc. IEEE Conference on Evolutionary Computation, 1996, hal. 616-621.
A. Maria, E.Y. Sinaga, dan M.H. Iwo, “Penyelesaian Masalah Travelling Salesman Problem Menggunakan Ant Colony Optimization (ACO)”, Jurnal Media Informatika, Vol. 6, hal. 1-5, 2008.
X. Chen, Y. Zhou, Z. Tang, dan Q. Luo, “A Hybrid Algorithm Combining Glowworm Swarm Optimization and Complete 2-Opt Algorithm for Spherical Travelling Salesman Problems,” Applied Soft Computing Journal, Vol. 58, hal. 104–114, September 2017.
A. Izzah, B.A. Nugroho, W.F. Mahmudy, F.A. Bachtiar, T.A. Cinderatama, dan Y.A. Sari, “Convergence Analysis in Swarm Intelligence for City Tour Optimization,” Proc. International Seminar on Research of Information Technology and Intelligent System, 2019, hal. 109.
© Jurnal Nasional Teknik Elektro dan Teknologi Informasi, under the terms of the Creative Commons Attribution-ShareAlike 4.0 International License.