An overview of the role of Zingiber officinale as an antimicrobial resistance (AMR) solution and a source of antioxidants

  • Ni Kadek Yunita Sari Program of Biology, Faculty of Health, Science and Technology, Universitas Dhyana Pura.Jl. Raya Padang Luwih, Badung 80351, Bali, Indonesia
  • Anak Agung Ayu Putri Permatasari Study program of Biology, Faculty of Health, Science and Technology, Universitas Dhyana Pura, North Kuta, Badung (80361) Bali, Indonesia
  • Sri Puji Astuti Wahyuningsih Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia
  • Almando Geraldi Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia
  • Putu Angga Wiradana Study program of Biology, Faculty of Health, Science and Technology, Universitas Dhyana Pura, North Kuta, Badung (80361) Bali, Indonesia
  • I Gede Widhiantara Study program of Biology, Faculty of Health, Science and Technology, Universitas Dhyana Pura, North Kuta, Badung (80361) Bali, Indonesia
  • Novaria Sari Dewi Panjaitan Center for Biomedical Research, Research Organization for Health, National Research and Innovation Agency, Cibinong Science Center, Cibinong - Bogor Indonesia
Keywords: Antimicrobial resistance, gene transfer, Biofilm formation, bacterial infection, Zingiber officinale

Abstract

In this review, we describe the known mechanisms of antimicrobial resistance which was increasing in this era, due to the misuse of antimicrobial agents such as antibiotics, or genetic and phenotypic mechanisms. In this review, the concerns, especially addressed by designated researchers in their study and WHO in their observations and reports, regarding the types or strains of bacteria with antimicrobial resistances were described. In addition, the predicted mechanisms that promote the development and occurrence of antimicrobial resistances, such as bacterial biofilm formation, horizontal gene transfer, genetic mutations, free DNA which contains antimicrobial resistance genes, plasmids transfer through transformation or conjugation from bacterial cell to cell were well described. In addition, we also tried to describe the use of Z. officinale. The antimicrobial capabilities of this herbal plant are attributed to its capacity to create many secondary metabolites with rather complicated structures that have antibacterial and antioxidant characteristics. Z. officinale had been used for many kinds of diseases treatment traditionally. And along the way, the advance techniques of research in chemistry and biology fields had found out the composition and bioactive compound. In this review, the common online databases such as PubMed, Semantic Scholar, Crossref, Medline, Scopus, and Web of Science (WoS) were utilized to conduct literature searches. According to recent progress of antimicrobial cases observed, the efforts to strengthen the surveillance, general health systems, tightened the antimicrobial medicine distribution rules, and education for public are indeed needed.

References

Abdulrazaq, N. B., Cho, M. M., Win, N. N., Zaman, R., & Rahman, M. T. (2012). Beneficial effects of ginger ( Zingiber officinale ) on carbohydrate metabolism in streptozotocin-induced diabetic rats. British Journal of Nutrition, 108(7), 1194–1201. https://doi.org/10.1017/S0007114511006635
Adeyemi, O. S., Fambegbe, M., Daniyan, O. R., & Nwajei, I. (2012). Yoyo Bitters, a polyherbal formulation influenced some biochemical parameters in Wistar rats. Journal of Basic and Clinical Physiology and Pharmacology, 23(4). https://doi.org/10.1515/jbcpp-2012-0026
Aeschbach, R., Löliger, J., Scott, B. C., Murcia, A., Butler, J., Halliwell, B., & Aruoma, O. I. (1994). Antioxidant actions of thymol, carvacrol, 6-gingerol, zingerone and hydroxytyrosol. Food and Chemical Toxicology, 32(1), 31–36. https://doi.org/10.1016/0278-6915(84)90033-4
Ahmed, N., Karobari, M. I., Yousaf, A., Mohamed, R. N., Arshad, S., Basheer, S. N., Peeran, S. W., Noorani, T. Y., Assiry, A. A., Alharbi, A. S., & Yean, C. Y. (2022). The Antimicrobial Efficacy Against Selective Oral Microbes, Antioxidant Activity and Preliminary Phytochemical Screening of Zingiber officinale. Infection and Drug Resistance, Volume 15, 2773–2785. https://doi.org/10.2147/IDR.S364175
Ahmed, W., Angel, N., Edson, J., Bibby, K., Bivins, A., O’Brien, J. W., Choi, P. M., Kitajima, M., Simpson, S. L., Li, J., Tscharke, B., Verhagen, R., Smith, W. J. M., Zaugg, J., Dierens, L., Hugenholtz, P., Thomas, K. V., & Mueller, J. F. (2020). First confirmed detection of SARS-CoV-2 in untreated wastewater in Australia: A proof of concept for the wastewater surveillance of COVID-19 in the community. Science of The Total Environment, 728, 138764. https://doi.org/10.1016/j.scitotenv.2020.138764
Alawi, M., Torrijos, T. V., & Walsh, F. (2022). Plasmid-mediated antimicrobial resistance in drinking water. Environmental Advances, 8, 100191. https://doi.org/10.1016/j.envadv.2022.100191
Ali, B. H., Blunden, G., Tanira, M. O., & Nemmar, A. (2008). Some phytochemical, pharmacological and toxicological properties of ginger (Zingiber officinale Roscoe): a review of recent research. Food and Chemical Toxicology : An International Journal Published for the British Industrial Biological Research Association, 46(2), 409–420. https://doi.org/10.1016/j.fct.2007.09.085
Anjum, M. F., Schmitt, H., Börjesson, S., Berendonk, T. U., Donner, E., Stehling, E. G., Boerlin, P., Topp, E., Jardine, C., Li, X., Li, B., Dolejska, M., Madec, J.-Y., Dagot, C., Guenther, S., Walsh, F., Villa, L., Veldman, K., Sunde, M., … Pedersen, K. (2021). The potential of using E. coli as an indicator for the surveillance of antimicrobial resistance (AMR) in the environment. Current Opinion in Microbiology, 64, 152–158. https://doi.org/10.1016/j.mib.2021.09.011
Annunziato. (2019). Strategies to Overcome Antimicrobial Resistance (AMR) Making Use of Non-Essential Target Inhibitors: A Review. International Journal of Molecular Sciences, 20(23), 5844. https://doi.org/10.3390/ijms20235844
Arapović, J., Kompes, G., Dedić, K., Teskeredžić, S., Ostojić, M., Travar, M., Tihić, N., Delić, J., Skočibušić, S., Zekiri-Sivro, M., Verhaz, A., Piljić, D., Laura, L., Duvnjak, S., Zdelar-Tuk, M., Arapović, M., Šabotić, E., Reil, I., Nikolić, J., … Špičić, S. (2022). Antimicrobial resistance profiles of human Brucella melitensis isolates in three different microdilution broths: the first multicentre study in Bosnia and Herzegovina. Journal of Global Antimicrobial Resistance, 29, 99–104. https://doi.org/10.1016/j.jgar.2022.02.005
Arega, B., Woldeamanuel, Y., Adane, K., Abubeker, A., & Asrat, D. (2018). Microbial spectrum and drug-resistance profile of isolates causing bloodstream infections in febrile cancer patients at a referral hospital in Addis Ababa, Ethiopia. Infection and Drug Resistance, Volume 11, 1511–1519. https://doi.org/10.2147/IDR.S168867
Arumugam, A., Agullo, P., Boopalan, T., Nandy, S., Lopez, R., Gutierrez, C., Narayan, M., & Rajkumar, L. (2014). Neem leaf extract inhibits mammary carcinogenesis by altering cell proliferation, apoptosis, and angiogenesis. Cancer Biology & Therapy, 15(1), 26–34. https://doi.org/10.4161/cbt.26604
Asamenew, G., Kim, H.-W., Lee, M.-K., Lee, S.-H., Kim, Y. J., Cha, Y.-S., Yoo, S. M., & Kim, J.-B. (2019). Characterization of phenolic compounds from normal ginger (Zingiber officinale Rosc.) and black ginger (Kaempferia parviflora Wall.) using UPLC–DAD–QToF–MS. European Food Research and Technology, 245(3), 653–665. https://doi.org/10.1007/s00217-018-3188-z
Asma, S. T., Imre, K., Morar, A., Herman, V., Acaroz, U., Mukhtar, H., Arslan-Acaroz, D., Shah, S. R. A., & Gerlach, R. (2022). An Overview of Biofilm Formation–Combating Strategies and Mechanisms of Action of Antibiofilm Agents. Life, 12(8), 1110. https://doi.org/10.3390/life12081110
Ayukekbong, J. A., Ntemgwa, M., & Atabe, A. N. (2017). The threat of antimicrobial resistance in developing countries: causes and control strategies. Antimicrobial Resistance & Infection Control, 6(1), 47. https://doi.org/10.1186/s13756-017-0208-x
Babaeekhou, L., & Ghane, M. (2021). Antimicrobial activity of ginger on cariogenic bacteria: molecular networking and molecular docking analyses. Journal of Biomolecular Structure and Dynamics, 39(6), 2164–2175. https://doi.org/10.1080/07391102.2020.1745283
Baron, S., Jouy, E., Larvor, E., Eono, F., Bougeard, S., & Kempf, I. (2014). Impact of Third-Generation-Cephalosporin Administration in Hatcheries on Fecal Escherichia coli Antimicrobial Resistance in Broilers and Layers. Antimicrobial Agents and Chemotherapy, 58(9), 5428–5434. https://doi.org/10.1128/AAC.03106-14
Baros Jorquera, C., Moreno-Switt, A. I., Sallaberry-Pincheira, N., Munita, J. M., Flores Navarro, C., Tardone, R., González-Rocha, G., Singer, R. S., & Bueno, I. (2021). Antimicrobial resistance in wildlife and in the built environment in a wildlife rehabilitation center. One Health, 13, 100298. https://doi.org/10.1016/j.onehlt.2021.100298
Batista, A. D., A. Rodrigues, D., Figueiras, A., Zapata-Cachafeiro, M., Roque, F., & Herdeiro, M. T. (2020). Antibiotic Dispensation without a Prescription Worldwide: A Systematic Review. Antibiotics, 9(11), 786. https://doi.org/10.3390/antibiotics9110786
Batterman, S., Eisenberg, J., Hardin, R., Kruk, M. E., Lemos, M. C., Michalak, A. M., Mukherjee, B., Renne, E., Stein, H., Watkins, C., & Wilson, M. L. (2009). Sustainable Control of Water-Related Infectious Diseases: A Review and Proposal for Interdisciplinary Health-Based Systems Research. Environmental Health Perspectives, 117(7), 1023–1032. https://doi.org/10.1289/ehp.0800423
Bauer Faria, T. R., Furletti-Goes, V. F., Franzini, C. M., de Aro, A. A., de Andrade, T. A. M., Sartoratto, A., & de Menezes, C. C. (2021). Anti-inflammatory and antimicrobial effects of Zingiber officinale mouthwash on patients with fixed orthodontic appliances. American Journal of Orthodontics and Dentofacial Orthopedics, 159(1), 21–29. https://doi.org/10.1016/j.ajodo.2019.10.025
Betoni, J. E. C., Mantovani, R. P., Barbosa, L. N., Di Stasi, L. C., & Fernandes Junior, A. (2006). Synergism between plant extract and antimicrobial drugs used on Staphylococcus aureus diseases. Memórias Do Instituto Oswaldo Cruz, 101(4), 387–390. https://doi.org/10.1590/S0074-02762006000400007
Birgand, G., Mutters, N. T., Ahmad, R., Tacconelli, E., Lucet, J.-C., & Holmes, A. (2020). Risk perception of antimicrobial resistance by infection control specialists in Europe: a case-vignette study. Antimicrobial Resistance & Infection Control, 9(1), 33. https://doi.org/10.1186/s13756-020-0695-z
Blair, J. M. A., Webber, M. A., Baylay, A. J., Ogbolu, D. O., & Piddock, L. J. V. (2015). Molecular mechanisms of antibiotic resistance. Nature Reviews Microbiology, 13(1), 42–51. https://doi.org/10.1038/nrmicro3380
C Reygaert, W. (2018). An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiology, 4(3), 482–501. https://doi.org/10.3934/microbiol.2018.3.482
Calderón, D., Cárdenas, P. A., Prado-Vivar, B., Graham, J. P., & Trueba, G. (2022). A longitudinal study of dominant E. coli lineages and antimicrobial resistance in the gut of children living in an upper middle-income country. Journal of Global Antimicrobial Resistance, 29, 136–140. https://doi.org/10.1016/j.jgar.2022.03.002
Chakotiya, A. S., Tanwar, A., Narula, A., & Sharma, R. K. (2017). Zingiber officinale : Its antibacterial activity on Pseudomonas aeruginosa and mode of action evaluated by flow cytometry. Microbial Pathogenesis, 107, 254–260. https://doi.org/10.1016/j.micpath.2017.03.029
Chancey, S. T., Zähner, D., & Stephens, D. S. (2012). Acquired inducible antimicrobial resistance in Gram-positive bacteria. Future Microbiology, 7(8), 959–978. https://doi.org/10.2217/fmb.12.63
Chantziaras, I., Boyen, F., Callens, B., & Dewulf, J. (2014). Correlation between veterinary antimicrobial use and antimicrobial resistance in food-producing animals: a report on seven countries. Journal of Antimicrobial Chemotherapy, 69(3), 827–834. https://doi.org/10.1093/jac/dkt443
Chassagne, F., Samarakoon, T., Porras, G., Lyles, J. T., Dettweiler, M., Marquez, L., Salam, A. M., Shabih, S., Farrokhi, D. R., & Quave, C. L. (2021). A Systematic Review of Plants With Antibacterial Activities: A Taxonomic and Phylogenetic Perspective. Frontiers in Pharmacology, 11. https://doi.org/10.3389/fphar.2020.586548
Cheesman, M., Ilanko, A., Blonk, B., & Cock, I. (2017). Developing new antimicrobial therapies: Are synergistic combinations of plant extracts/compounds with conventional antibiotics the solution? Pharmacognosy Reviews, 11(22), 57. https://doi.org/10.4103/phrev.phrev_21_17
Chen, X., Chen, G., Wang, Z., & Kan, J. (2020). A comparison of a polysaccharide extracted from ginger (Zingiber officinale) stems and leaves using different methods: preparation, structure characteristics, and biological activities. International Journal of Biological Macromolecules, 151, 635–649. https://doi.org/10.1016/j.ijbiomac.2020.02.222
Chua, A. Q., Verma, M., Hsu, L. Y., & Legido-Quigley, H. (2021). An analysis of national action plans on antimicrobial resistance in Southeast Asia using a governance framework approach. The Lancet Regional Health - Western Pacific, 7, 100084. https://doi.org/10.1016/j.lanwpc.2020.100084
Clatworthy, A. E., Pierson, E., & Hung, D. T. (2007). Targeting virulence: a new paradigm for antimicrobial therapy. Nature Chemical Biology, 3(9), 541–548. https://doi.org/10.1038/nchembio.2007.24
Collignon, P., & McEwen, S. (2019). One Health—Its Importance in Helping to Better Control Antimicrobial Resistance. Tropical Medicine and Infectious Disease, 4(1), 22. https://doi.org/10.3390/tropicalmed4010022
Crabbé, A., Jensen, P. Ø., Bjarnsholt, T., & Coenye, T. (2019). Antimicrobial Tolerance and Metabolic Adaptations in Microbial Biofilms. Trends in Microbiology, 27(10), 850–863. https://doi.org/10.1016/j.tim.2019.05.003
Daughton, C. G. (2020). Wastewater surveillance for population-wide Covid-19: The present and future. Science of The Total Environment, 736, 139631. https://doi.org/10.1016/j.scitotenv.2020.139631
Davies, D. (2003). Understanding biofilm resistance to antibacterial agents. Nature Reviews Drug Discovery, 2(2), 114–122. https://doi.org/10.1038/nrd1008
Dhingra, S., Rahman, N. A. A., Peile, E., Rahman, M., Sartelli, M., Hassali, M. A., Islam, T., Islam, S., & Haque, M. (2020). Microbial Resistance Movements: An Overview of Global Public Health Threats Posed by Antimicrobial Resistance, and How Best to Counter. Frontiers in Public Health, 8. https://doi.org/10.3389/fpubh.2020.535668
Dohmen, W., Schmitt, H., Bonten, M., & Heederik, D. (2017). Air exposure as a possible route for ESBL in pig farmers. Environmental Research, 155, 359–364. https://doi.org/10.1016/j.envres.2017.03.002
El-Ghorab, A. H., Nauman, M., Anjum, F. M., Hussain, S., & Nadeem, M. (2010). A Comparative Study on Chemical Composition and Antioxidant Activity of Ginger ( Zingiber officinale ) and Cumin ( Cuminum cyminum ). Journal of Agricultural and Food Chemistry, 58(14), 8231–8237. https://doi.org/10.1021/jf101202x
Fahmi, A., Hassanen, N., Abdur-Rahman, M., & Shams-Eldin, E. (2019). Phytochemicals, antioxidant activity and hepatoprotective effect of ginger ( Zingiber officinale ) on diethylnitrosamine toxicity in rats. Biomarkers, 24(5), 436–447. https://doi.org/10.1080/1354750X.2019.1606280
Fair, R. J., & Tor, Y. (2014). Antibiotics and Bacterial Resistance in the 21st Century. Perspectives in Medicinal Chemistry, 6, PMC.S14459. https://doi.org/10.4137/PMC.S14459
Firoozeh, F., Zibaei, M., Badmasti, F., & Khaledi, A. (2022). Virulence factors, antimicrobial resistance and the relationship between these characteristics in uropathogenic Escherichia coli. Gene Reports, 27, 101622. https://doi.org/10.1016/j.genrep.2022.101622
Flores-Vargas, G., Bergsveinson, J., Lawrence, J. R., & Korber, D. R. (2021). Environmental Biofilms as Reservoirs for Antimicrobial Resistance. Frontiers in Microbiology, 12. https://doi.org/10.3389/fmicb.2021.766242
Fu, Y.-W., Wang, B., Zhang, Q.-Z., Xu, D.-H., Liu, Y.-M., Hou, T.-L., & Guo, S.-Q. (2019). Efficacy and antiparasitic mechanism of 10-gingerol isolated from ginger Zingiber officinale against Ichthyophthirius multifiliis in grass carp. Veterinary Parasitology, 265, 74–84. https://doi.org/10.1016/j.vetpar.2018.11.011
Galafassi, S., Sabatino, R., Sathicq, M. B., Eckert, E. M., Fontaneto, D., Dalla Fontana, G., Mossotti, R., Corno, G., Volta, P., & Di Cesare, A. (2021). Contribution of microplastic particles to the spread of resistances and pathogenic bacteria in treated wastewaters. Water Research, 201, 117368. https://doi.org/10.1016/j.watres.2021.117368
Gemeda, B. A., Assefa, A., Jaleta, M. B., Amenu, K., & Wieland, B. (2021). Antimicrobial resistance in Ethiopia: A systematic review and meta-analysis of prevalence in foods, food handlers, animals, and the environment. One Health, 13, 100286. https://doi.org/10.1016/j.onehlt.2021.100286
Goel, N., Fatima, S. W., Kumar, S., Sinha, R., & Khare, S. K. (2021). Antimicrobial resistance in biofilms: Exploring marine actinobacteria as a potential source of antibiotics and biofilm inhibitors. Biotechnology Reports, 30, e00613. https://doi.org/10.1016/j.btre.2021.e00613
Gopi, S., Amalraj, A., Kalarikkal, N., Zhang, J., Thomas, S., & Guo, Q. (2019). Preparation and characterization of nanocomposite films based on gum arabic, maltodextrin and polyethylene glycol reinforced with turmeric nanofiber isolated from turmeric spent. Materials Science and Engineering: C, 97, 723–729. https://doi.org/10.1016/j.msec.2018.12.089
Gupta, P. D., & Birdi, T. J. (2017). Development of botanicals to combat antibiotic resistance. Journal of Ayurveda and Integrative Medicine, 8(4), 266–275. https://doi.org/10.1016/j.jaim.2017.05.004
Harikumar, G., & Krishanan, K. (2022). The growing menace of drug resistant pathogens and recent strategies to overcome drug resistance: A review. Journal of King Saud University - Science, 34(4), 101979. https://doi.org/10.1016/j.jksus.2022.101979
Heuer, H., Schmitt, H., & Smalla, K. (2011). Antibiotic resistance gene spread due to manure application on agricultural fields. Current Opinion in Microbiology, 14(3), 236–243. https://doi.org/10.1016/j.mib.2011.04.009
Hirabayashi, A., Kajihara, T., Yahara, K., Shibayama, K., & Sugai, M. (2021). Impact of the COVID-19 pandemic on the surveillance of antimicrobial resistance. Journal of Hospital Infection, 117, 147–156. https://doi.org/10.1016/j.jhin.2021.09.011
Hölzel, C. S., Müller, C., Harms, K. S., Mikolajewski, S., Schäfer, S., Schwaiger, K., & Bauer, J. (2012). Heavy metals in liquid pig manure in light of bacterial antimicrobial resistance. Environmental Research, 113, 21–27. https://doi.org/10.1016/j.envres.2012.01.002
Hopkins, A. L., Lamm, M. G., Funk, J. L., & Ritenbaugh, C. (2013). Hibiscus sabdariffa L. in the treatment of hypertension and hyperlipidemia: A comprehensive review of animal and human studies. Fitoterapia, 85, 84–94. https://doi.org/10.1016/j.fitote.2013.01.003
Huijbers, P. M. C., Blaak, H., de Jong, M. C. M., Graat, E. A. M., Vandenbroucke-Grauls, C. M. J. E., & de Roda Husman, A. M. (2015). Role of the Environment in the Transmission of Antimicrobial Resistance to Humans: A Review. Environmental Science & Technology, 49(20), 11993–12004. https://doi.org/10.1021/acs.est.5b02566
Huijbers, P. M. C., Flach, C.-F., & Larsson, D. G. J. (2019). A conceptual framework for the environmental surveillance of antibiotics and antibiotic resistance. Environment International, 130, 104880. https://doi.org/10.1016/j.envint.2019.05.074
Ippoushi, K., Azuma, K., Ito, H., Horie, H., & Higashio, H. (2003). [6]-Gingerol inhibits nitric oxide synthesis in activated J774.1 mouse macrophages and prevents peroxynitrite-induced oxidation and nitration reactions. Life Sciences, 73(26), 3427–3437. https://doi.org/10.1016/j.lfs.2003.06.022
Jan, R., Gani, A., Masarat Dar, M., & Bhat, N. A. (2022). Bioactive characterization of ultrasonicated ginger (Zingiber officinale) and licorice (Glycyrrhiza Glabra) freeze dried extracts. Ultrasonics Sonochemistry, 88, 106048. https://doi.org/10.1016/j.ultsonch.2022.106048
Kapoor, G., Saigal, S., & Elongavan, A. (2017). Action and resistance mechanisms of antibiotics: A guide for clinicians. Journal of Anaesthesiology Clinical Pharmacology, 33(3), 300. https://doi.org/10.4103/joacp.JOACP_349_15
Kappachery, S., Paul, D., Yoon, J., & Kweon, J. H. (2010). Vanillin, a potential agent to prevent biofouling of reverse osmosis membrane. Biofouling, 26(6), 667–672. https://doi.org/10.1080/08927014.2010.506573
Kassinger, S. J., & van Hoek, M. L. (2021). Genetic Determinants of Antibiotic Resistance in Francisella. Frontiers in Microbiology, 12. https://doi.org/10.3389/fmicb.2021.644855
Kaur, K., Reddy, S., Barathe, P., Oak, U., Shriram, V., Kharat, S. S., Govarthanan, M., & Kumar, V. (2022). Microplastic-associated pathogens and antimicrobial resistance in environment. Chemosphere, 291, 133005. https://doi.org/10.1016/j.chemosphere.2021.133005
Kaushik, S., Jangra, G., Kundu, V., Yadav, J. P., & Kaushik, S. (2020). Anti-viral activity of Zingiber officinale (Ginger) ingredients against the Chikungunya virus. VirusDisease, 31(3), 270–276. https://doi.org/10.1007/s13337-020-00584-0
Keen, P. L., & Montforts, M. H. M. M. (Eds.). (2011). Antimicrobial Resistance in the Environment. John Wiley & Sons, Inc. https://doi.org/10.1002/9781118156247
Kelly, J. J., London, M. G., McCormick, A. R., Rojas, M., Scott, J. W., & Hoellein, T. J. (2021). Wastewater treatment alters microbial colonization of microplastics. PLOS ONE, 16(1), e0244443. https://doi.org/10.1371/journal.pone.0244443
Keswani, A., Oliver, D. M., Gutierrez, T., & Quilliam, R. S. (2016). Microbial hitchhikers on marine plastic debris: Human exposure risks at bathing waters and beach environments. Marine Environmental Research, 118, 10–19. https://doi.org/10.1016/j.marenvres.2016.04.006
Kim, H.-S., Lee, S.-H., Byun, Y., & Park, H.-D. (2015). 6-Gingerol reduces Pseudomonas aeruginosa biofilm formation and virulence via quorum sensing inhibition. Scientific Reports, 5(1), 8656. https://doi.org/10.1038/srep08656
Knight, G. M., Glover, R. E., McQuaid, C. F., Olaru, I. D., Gallandat, K., Leclerc, Q. J., Fuller, N. M., Willcocks, S. J., Hasan, R., van Kleef, E., & Chandler, C. I. (2021). Antimicrobial resistance and COVID-19: Intersections and implications. ELife, 10. https://doi.org/10.7554/eLife.64139
Kok, M., Maton, L., van der Peet, M., Hankemeier, T., & van Hasselt, J. G. C. (2022). Unraveling antimicrobial resistance using metabolomics. Drug Discovery Today, 27(6), 1774–1783. https://doi.org/10.1016/j.drudis.2022.03.015
Konmun, J., Danwilai, K., Ngamphaiboon, N., Sripanidkulchai, B., Sookprasert, A., & Subongkot, S. (2017). A phase II randomized double-blind placebo-controlled study of 6-gingerol as an anti-emetic in solid tumor patients receiving moderately to highly emetogenic chemotherapy. Medical Oncology, 34(4), 69. https://doi.org/10.1007/s12032-017-0931-4
Lakoh, S., Li, L., Sevalie, S., Guo, X., Adekanmbi, O., Yang, G., Adebayo, O., Yi, L., Coker, J. M., Wang, S., Wang, T., Sun, W., Habib, A. G., & Klein, E. Y. (2020). Antibiotic resistance in patients with clinical features of healthcare-associated infections in an urban tertiary hospital in Sierra Leone: a cross-sectional study. Antimicrobial Resistance & Infection Control, 9(1), 38. https://doi.org/10.1186/s13756-020-0701-5
Lanyon, C. W., King, J. R., Stekel, D. J., & Gomes, R. L. (2021). A Model to Investigate the Impact of Farm Practice on Antimicrobial Resistance in UK Dairy Farms. Bulletin of Mathematical Biology, 83(4), 36. https://doi.org/10.1007/s11538-021-00865-9
Laube, H., Friese, A., von Salviati, C., Guerra, B., Käsbohrer, A., Kreienbrock, L., & Roesler, U. (2013). Longitudinal Monitoring of Extended-Spectrum-Beta-Lactamase/AmpC-Producing Escherichia coli at German Broiler Chicken Fattening Farms. Applied and Environmental Microbiology, 79(16), 4815–4820. https://doi.org/10.1128/AEM.00856-13
Lázár, V., & Kishony, R. (2019). Transient antibiotic resistance calls for attention. Nature Microbiology, 4(10), 1606–1607. https://doi.org/10.1038/s41564-019-0571-x
Li, J., Cao, J., Zhu, Y., Chen, Q., Shen, F., Wu, Y., Xu, S., Fan, H., Da, G., Huang, R., Wang, J., de Jesus, A. L., Morawska, L., Chan, C. K., Peccia, J., & Yao, M. (2018). Global Survey of Antibiotic Resistance Genes in Air. Environmental Science & Technology, 52(19), 10975–10984. https://doi.org/10.1021/acs.est.8b02204
Li, X.-H., & Lee, J.-H. (2017). Antibiofilm agents: A new perspective for antimicrobial strategy. Journal of Microbiology, 55(10), 753–766. https://doi.org/10.1007/s12275-017-7274-x
Li, Y., Tran, V. H., Duke, C. C., & Roufogalis, B. D. (2012). Preventive and Protective Properties of Zingiber officinale (Ginger) in Diabetes Mellitus, Diabetic Complications, and Associated Lipid and Other Metabolic Disorders: A Brief Review. Evidence-Based Complementary and Alternative Medicine, 2012, 1–10. https://doi.org/10.1155/2012/516870
Lin, M., & Sun, J. (2022). Antimicrobial peptide-inspired antibacterial polymeric materials for biosafety. Biosafety and Health. https://doi.org/10.1016/j.bsheal.2022.03.009
Liu, M., Kemper, N., Volkmann, N., & Schulz, J. (2018). Resistance of Enterococcus spp. in Dust From Farm Animal Houses: A Retrospective Study. Frontiers in Microbiology, 9. https://doi.org/10.3389/fmicb.2018.03074
Luiken, R. E. C., Van Gompel, L., Bossers, A., Munk, P., Joosten, P., Hansen, R. B., Knudsen, B. E., García-Cobos, S., Dewulf, J., Aarestrup, F. M., Wagenaar, J. A., Smit, L. A. M., Mevius, D. J., Heederik, D. J. J., & Schmitt, H. (2020). Farm dust resistomes and bacterial microbiomes in European poultry and pig farms. Environment International, 143, 105971. https://doi.org/10.1016/j.envint.2020.105971
Luiken, R. E., Heederik, D. J., Scherpenisse, P., Van Gompel, L., van Heijnsbergen, E., Greve, G. D., Jongerius-Gortemaker, B. G., Tersteeg-Zijderveld, M. H., Fischer, J., Juraschek, K., Skarżyńska, M., Zając, M., Wasyl, D., Wagenaar, J. A., Smit, L. A., Wouters, I. M., Mevius, D. J., & Schmitt, H. (2022). Determinants for antimicrobial resistance genes in farm dust on 333 poultry and pig farms in nine European countries. Environmental Research, 208, 112715. https://doi.org/10.1016/j.envres.2022.112715
Luo, X., Qian, L., Xiao, Y., Tang, Y., Zhao, Y., Wang, X., Gu, L., Lei, Z., Bao, J., Wu, J., He, T., Hu, F., Zheng, J., Li, H., Zhu, W., Shao, L., Dong, X., Chen, D., Qian, X., & Yang, Y. (2019). A diversity-oriented rhodamine library for wide-spectrum bactericidal agents with low inducible resistance against resistant pathogens. Nature Communications, 10(1), 258. https://doi.org/10.1038/s41467-018-08241-3
Maekawa, L. E., Rossoni, R. D., Barbosa, J. O., Jorge, A. O. C., Junqueira, J. C., & Valera, M. C. (2015). Different Extracts of Zingiber officinale Decrease Enterococcus faecalis Infection in Galleria mellonella. Brazilian Dental Journal, 26(2), 105–109. https://doi.org/10.1590/0103-6440201300199
Mallikarjuna, K., Sahitya Chetan, P., Sathyavelu Reddy, K., & Rajendra, W. (2008). Ethanol toxicity: Rehabilitation of hepatic antioxidant defense system with dietary ginger. Fitoterapia, 79(3), 174–178. https://doi.org/10.1016/j.fitote.2007.11.007
Manach, C., Scalbert, A., Morand, C., Rémésy, C., & Jiménez, L. (2004). Polyphenols: food sources and bioavailability. The American Journal of Clinical Nutrition, 79(5), 727–747. https://doi.org/10.1093/ajcn/79.5.727
Mancuso, G., Midiri, A., Gerace, E., & Biondo, C. (2021). Bacterial Antibiotic Resistance: The Most Critical Pathogens. Pathogens, 10(10), 1310. https://doi.org/10.3390/pathogens10101310
Manyi-Loh, C., Mamphweli, S., Meyer, E., & Okoh, A. (2018). Antibiotic Use in Agriculture and Its Consequential Resistance in Environmental Sources: Potential Public Health Implications. Molecules, 23(4), 795. https://doi.org/10.3390/molecules23040795
Martínez, J. L., & Rojo, F. (2011). Metabolic regulation of antibiotic resistance. FEMS Microbiology Reviews, 35(5), 768–789. https://doi.org/10.1111/j.1574-6976.2011.00282.x
McEachran, A. D., Blackwell, B. R., Hanson, J. D., Wooten, K. J., Mayer, G. D., Cox, S. B., & Smith, P. N. (2015). Antibiotics, Bacteria, and Antibiotic Resistance Genes: Aerial Transport from Cattle Feed Yards via Particulate Matter. Environmental Health Perspectives, 123(4), 337–343. https://doi.org/10.1289/ehp.1408555
McLaughlin, D., Bradley, A., Dottorini, T., Giebel, K., Leach, K., Hyde, R., & Green, M. (2022). Identifying associations between management practices and antimicrobial resistances of sentinel bacteria recovered from bulk tank milk on dairy farms. Preventive Veterinary Medicine, 204, 105666. https://doi.org/10.1016/j.prevetmed.2022.105666
Mehta, J., Rolta, R., & Dev, K. (2022). Role of medicinal plants from North Western Himalayas as an efflux pump inhibitor against MDR AcrAB-TolC Salmonella enterica serovar typhimurium: In vitro and In silico studies. Journal of Ethnopharmacology, 282, 114589. https://doi.org/10.1016/j.jep.2021.114589
Metcalf, R., White, H. L., Moresco, V., Ormsby, M. J., Oliver, D. M., & Quilliam, R. S. (2022). Sewage-associated plastic waste washed up on beaches can act as a reservoir for faecal bacteria, potential human pathogens, and genes for antimicrobial resistance. Marine Pollution Bulletin, 180, 113766. https://doi.org/10.1016/j.marpolbul.2022.113766
Meylan, S., Andrews, I. W., & Collins, J. J. (2018). Targeting Antibiotic Tolerance, Pathogen by Pathogen. Cell, 172(6), 1228–1238. https://doi.org/10.1016/j.cell.2018.01.037
Michael, A., Kelman, T., & Pitesky, M. (2020). Overview of Quantitative Methodologies to Understand Antimicrobial Resistance via Minimum Inhibitory Concentration. Animals, 10(8), 1405. https://doi.org/10.3390/ani10081405
Moffo, F., Mouiche, M. M. M., Djomgang, H. K., Tombe, P., Wade, A., Kochivi, F. L., Dongmo, J. B., Mbah, C. K., Mapiefou, N. P., Mingoas, J.-P. K., & Awah-Ndukum, J. (2022). Associations between antimicrobial use and antimicrobial resistance of Escherichia coli isolated from poultry litter under field conditions in Cameroon. Preventive Veterinary Medicine, 204, 105668. https://doi.org/10.1016/j.prevetmed.2022.105668
Mogasale, V. V., Saldanha, P., Pai, V., Rekha, P. D., & Mogasale, V. (2021). A descriptive analysis of antimicrobial resistance patterns of WHO priority pathogens isolated in children from a tertiary care hospital in India. Scientific Reports, 11(1), 5116. https://doi.org/10.1038/s41598-021-84293-8
Mok, J. S., Cho, S. R., Park, Y. J., Jo, M. R., Ha, K. S., Kim, P. H., & Kim, M. J. (2021). Distribution and antimicrobial resistance of Vibrio parahaemolyticus isolated from fish and shrimp aquaculture farms along the Korean coast. Marine Pollution Bulletin, 171, 112785. https://doi.org/10.1016/j.marpolbul.2021.112785
Monnet, D. L., & Harbarth, S. (2020). Will coronavirus disease (COVID-19) have an impact on antimicrobial resistance? Eurosurveillance, 25(45). https://doi.org/10.2807/1560-7917.ES.2020.25.45.2001886
Murphy, C. P., Carson, C., Smith, B. A., Chapman, B., Marrotte, J., McCann, M., Primeau, C., Sharma, P., & Parmley, E. J. (2018). Factors potentially linked with the occurrence of antimicrobial resistance in selected bacteria from cattle, chickens and pigs: A scoping review of publications for use in modelling of antimicrobial resistance (IAM.AMR Project). Zoonoses and Public Health, 65(8), 957–971. https://doi.org/10.1111/zph.12515
Nelson, D. W., Moore, J. E., & Rao, J. R. (2019). Antimicrobial resistance (AMR): significance to food quality and safety. Food Quality and Safety, 3(1), 15–22. https://doi.org/10.1093/fqsafe/fyz003
Nigussie, D., & Amsalu, A. (2017). Prevalence of uropathogen and their antibiotic resistance pattern among diabetic patients. Türk Üroloji Dergisi/Turkish Journal of Urology, 43(1), 85–92. https://doi.org/10.5152/tud.2016.86155
Oboh, G., & Ogunruku, O. O. (2010). Cyclophosphamide-induced oxidative stress in brain: Protective effect of hot short pepper (Capsicum frutescens L. var. abbreviatum). Experimental and Toxicologic Pathology, 62(3), 227–233. https://doi.org/10.1016/j.etp.2009.03.011
Oo, W. T., Carr, S. D., Marchello, C. S., San, M. M., Oo, A. T., Oo, K. M., Lwin, K. T., Win, H. H., & Crump, J. A. (2022). Point-prevalence surveys of antimicrobial consumption and resistance at a paediatric and an adult tertiary referral hospital in Yangon, Myanmar. Infection Prevention in Practice, 4(1), 100197. https://doi.org/10.1016/j.infpip.2021.100197
Panjaitan, N. S. D., Horng, Y.-T., Cheng, S.-W., Chung, W.-T., & Soo, P.-C. (2019). EtcABC, a Putative EII Complex, Regulates Type 3 Fimbriae via CRP-cAMP Signaling in Klebsiella pneumoniae. Frontiers in Microbiology, 10. https://doi.org/10.3389/fmicb.2019.01558
Park, M., Bae, J., & Lee, D.-S. (2008). Antibacterial activity of [10]-gingerol and [12]-gingerol isolated from ginger rhizome against periodontal bacteria. Phytotherapy Research, 22(11), 1446–1449. https://doi.org/10.1002/ptr.2473
Peterson, E., & Kaur, P. (2018). Antibiotic Resistance Mechanisms in Bacteria: Relationships Between Resistance Determinants of Antibiotic Producers, Environmental Bacteria, and Clinical Pathogens. Frontiers in Microbiology, 9. https://doi.org/10.3389/fmicb.2018.02928
Pham, D. N., Clark, L., & Li, M. (2021). Microplastics as hubs enriching antibiotic-resistant bacteria and pathogens in municipal activated sludge. Journal of Hazardous Materials Letters, 2, 100014. https://doi.org/10.1016/j.hazl.2021.100014
Quilliam, R. S., Taylor, J., & Oliver, D. M. (2019). The disparity between regulatory measurements of E. coli in public bathing waters and the public expectation of bathing water quality. Journal of Environmental Management, 232, 868–874. https://doi.org/10.1016/j.jenvman.2018.11.138
Ray, S., Das, S., & Suar, M. (2017). Molecular Mechanism of Drug Resistance. In Drug Resistance in Bacteria, Fungi, Malaria, and Cancer (pp. 47–110). Springer International Publishing. https://doi.org/10.1007/978-3-319-48683-3_3
Rodrigues, A., Oliver, D. M., McCarron, A., & Quilliam, R. S. (2019). Colonisation of plastic pellets (nurdles) by E. coli at public bathing beaches. Marine Pollution Bulletin, 139, 376–380. https://doi.org/10.1016/j.marpolbul.2019.01.011
Romoli, J. C. Z., Silva, M. V., Pante, G. C., Hoeltgebaum, D., Castro, J. C., Oliveira da Rocha, G. H., Capoci, I. R. G., Nerilo, S. B., Mossini, S. A. G., Micotti da Gloria, E., Svidzinski, T. I. E., Graton Mikcha, J. M., & Machinski, M. (2022). Anti-mycotoxigenic and antifungal activity of ginger, turmeric, thyme and rosemary essential oils in deoxynivalenol (DON) and zearalenone (ZEA) producing Fusarium graminearum. Food Additives & Contaminants: Part A, 39(2), 362–372. https://doi.org/10.1080/19440049.2021.1996636
Rortana, C., Wajjwalku, W., Boonyawiwat, V., Hrianpreecha, C., Thongratsakul, S., & Amavisit, P. (2018). Antimicrobial resistance and pirAB-like profiles of Vibrio parahaemolyticus in Pacific white shrimp. Agriculture and Natural Resources, 52(4), 377–381. https://doi.org/10.1016/j.anres.2018.10.010
Saki, J., Biranvand, E., & Arjmand, R. (2022). The in vitro anti-Leishmania Effect of Zingiber officinale Extract on Promastigotes and Amastigotes of Leishmania major and Leishmania tropica. Turkish Journal of Parasitology, 46(2), 91–96. https://doi.org/10.4274/tpd.galenos.2021.53825
Salas-Ambrosio, P., Tronnet, A., Verhaeghe, P., & Bonduelle, C. (2021). Synthetic Polypeptide Polymers as Simplified Analogues of Antimicrobial Peptides. Biomacromolecules, 22(1), 57–75. https://doi.org/10.1021/acs.biomac.0c00797
Shanmugam, K.R, Ramakrishna, C. ., Mallikarjuna, K., & Sathyavelu Reddy, K. (2010). Protective effect of Ginger aganst alcohol-induced renal damage and antioxidant enzymes in male albino rats. Indian Journal of Experimental Biology, 48, 143–149.
Shanmugam, Kondeti Ramudu, Mallikarjuna, K., Kesireddy, N., & Sathyavelu Reddy, K. (2011). Neuroprotective effect of ginger on anti-oxidant enzymes in streptozotocin-induced diabetic rats. Food and Chemical Toxicology, 49(4), 893–897. https://doi.org/10.1016/j.fct.2010.12.013
Sharma, D., Misba, L., & Khan, A. U. (2019). Antibiotics versus biofilm: an emerging battleground in microbial communities. Antimicrobial Resistance & Infection Control, 8(1), 76. https://doi.org/10.1186/s13756-019-0533-3
Singer, A. C., Shaw, H., Rhodes, V., & Hart, A. (2016). Review of Antimicrobial Resistance in the Environment and Its Relevance to Environmental Regulators. Frontiers in Microbiology, 7. https://doi.org/10.3389/fmicb.2016.01728
Stoilova, I., Krastanov, A., Stoyanova, A., Denev, P., & Gargova, S. (2007). Antioxidant activity of a ginger extract (Zingiber officinale). Food Chemistry, 102(3), 764–770. https://doi.org/10.1016/j.foodchem.2006.06.023
Sulaiman, F. A., Kazeem, M. O., Waheed, A. M., Temowo, S. O., Azeez, I. O., Zubair, F. I., Adeyemi, T. A., Nyang, A., & Adeyemi, O. S. (2014). Antimicrobial and toxic potential of aqueous extracts of Allium sativum , Hibiscus sabdariffa and Zingiber officinale in Wistar rats. Journal of Taibah University for Science, 8(4), 315–322. https://doi.org/10.1016/j.jtusci.2014.05.004
Tadesse, S., Alemayehu, H., Tenna, A., Tadesse, G., Tessema, T. S., Shibeshi, W., & Eguale, T. (2018). Antimicrobial resistance profile of Staphylococcus aureus isolated from patients with infection at Tikur Anbessa Specialized Hospital, Addis Ababa, Ethiopia. BMC Pharmacology and Toxicology, 19(1), 24. https://doi.org/10.1186/s40360-018-0210-9
Unemo, M., Lahra, M. M., Escher, M., Eremin, S., Cole, M. J., Galarza, P., Ndowa, F., Martin, I., Dillon, J.-A. R., Galas, M., Ramon-Pardo, P., Weinstock, H., & Wi, T. (2021). WHO global antimicrobial resistance surveillance for Neisseria gonorrhoeae 2017–18: a retrospective observational study. The Lancet Microbe, 2(11), e627–e636. https://doi.org/10.1016/S2666-5247(21)00171-3
Vaz, M. S. M., Simionatto, E., de Almeida de Souza, G. H., Fraga, T. L., de Oliveira, G. G., Coutinho, E. J., Oliveira dos Santos, M. V., & Simionatto, S. (2022). Zingiber officinale Roscoe essential oil: An alternative strategy in the development of novel antimicrobial agents against MDR bacteria. Industrial Crops and Products, 185, 115065. https://doi.org/10.1016/j.indcrop.2022.115065
von Salviati, C., Laube, H., Guerra, B., Roesler, U., & Friese, A. (2015). Emission of ESBL/AmpC-producing Escherichia coli from pig fattening farms to surrounding areas. Veterinary Microbiology, 175(1), 77–84. https://doi.org/10.1016/j.vetmic.2014.10.010
Wahabi, H. A., Alansary, L. A., Al-Sabban, A. H., & Glasziuo, P. (2010). The effectiveness of Hibiscus sabdariffa in the treatment of hypertension: A systematic review. Phytomedicine, 17(2), 83–86. https://doi.org/10.1016/j.phymed.2009.09.002
Wang, H., Liu, Y., Cai, K., Zhang, B., Tang, S., Zhang, W., & Liu, W. (2021). Antibacterial polysaccharide-based hydrogel dressing containing plant essential oil for burn wound healing. Burns & Trauma, 9. https://doi.org/10.1093/burnst/tkab041
Wang, R., Wang, L., Zhang, L., Wan, S., Li, C., & Liu, S. (2022). Solvents effect on phenolics, iridoids, antioxidant activity, antibacterial activity, and pancreatic lipase inhibition activity of noni (Morinda citrifolia L.) fruit extract. Food Chemistry, 377, 131989. https://doi.org/10.1016/j.foodchem.2021.131989
Wang, Z., Gao, J., Zhao, Y., Dai, H., Jia, J., & Zhang, D. (2021). Plastisphere enrich antibiotic resistance genes and potential pathogenic bacteria in sewage with pharmaceuticals. Science of The Total Environment, 768, 144663. https://doi.org/10.1016/j.scitotenv.2020.144663
Westblade, L. F., Errington, J., & Dörr, T. (2020). Antibiotic tolerance. PLOS Pathogens, 16(10), e1008892. https://doi.org/10.1371/journal.ppat.1008892
White, A., & Hughes, J. M. (2019). Critical Importance of a One Health Approach to Antimicrobial Resistance. EcoHealth, 16(3), 404–409. https://doi.org/10.1007/s10393-019-01415-5
WHO. (2021). World Antimicrobial Awareness Week. World Antimicrobial Awareness Week 2021. https://www.who.int/campaigns/world-antimicrobial-awareness-week/2021
Yang, Y., Zhou, R., Chen, B., Zhang, T., Hu, L., & Zou, S. (2018). Characterization of airborne antibiotic resistance genes from typical bioaerosol emission sources in the urban environment using metagenomic approach. Chemosphere, 213, 463–471. https://doi.org/10.1016/j.chemosphere.2018.09.066
York, A. (2021). A new general mechanism of AMR. Nature Reviews Microbiology, 19(5), 283–283. https://doi.org/10.1038/s41579-021-00539-2
Yu, Z., Gunn, L., Wall, P., & Fanning, S. (2017). Antimicrobial resistance and its association with tolerance to heavy metals in agriculture production. Food Microbiology, 64, 23–32. https://doi.org/10.1016/j.fm.2016.12.009
Zeng, T., Guo, F.-F., Zhang, C.-L., Song, F.-Y., Zhao, X.-L., & Xie, K.-Q. (2012). A meta-analysis of randomized, double-blind, placebo-controlled trials for the effects of garlic on serum lipid profiles. Journal of the Science of Food and Agriculture, 92(9), 1892–1902. https://doi.org/10.1002/jsfa.5557
Zhang, L., Qin, M., Yin, J., Liu, X., Zhou, J., Zhu, Y., & Liu, Y. (2022). Antibacterial activity and mechanism of ginger extract against Ralstonia solanacearum. Journal of Applied Microbiology. https://doi.org/10.1111/jam.15733
Zhang, X.-X., Zhang, T., & Fang, H. H. P. (2009). Antibiotic resistance genes in water environment. Applied Microbiology and Biotechnology, 82(3), 397–414. https://doi.org/10.1007/s00253-008-1829-z
Zhang, X., Zhang, Y., Wu, N., Li, W., Song, X., Ma, Y., & Niu, Z. (2021). Colonization characteristics of bacterial communities on plastic debris: The localization of immigrant bacterial communities. Water Research, 193, 116883. https://doi.org/10.1016/j.watres.2021.116883
Zhou, M., Fu, P., Fang, C., Shang, S., Hua, C., Jing, C., Xu, H., Chen, Y., Deng, J., Zhang, H., Zhang, T., Wang, S., Lin, A., Huang, W., Cao, Q., Wang, C., Yu, H., Cao, S., Deng, H., … Hao, J. (2021). Antimicrobial resistance of Haemophilus influenzae isolates from pediatric hospitals in Mainland China: Report from the ISPED program, 2017–2019. Indian Journal of Medical Microbiology, 39(4), 434–438. https://doi.org/10.1016/j.ijmmb.2021.09.001
Published
2023-03-31
How to Cite
Ni Kadek Yunita Sari, Anak Agung Ayu Putri Permatasari, Sri Puji Astuti Wahyuningsih, Almando Geraldi, Putu Angga Wiradana, I Gede Widhiantara, & Novaria Sari Dewi Panjaitan. (2023). An overview of the role of Zingiber officinale as an antimicrobial resistance (AMR) solution and a source of antioxidants. Indonesian Journal of Pharmacy, 34(1), 1-23. https://doi.org/10.22146/ijp.5307
Section
Review Article