Somatostatin Analog-Based Radiopharmaceuticals for Molecular Imaging and Therapy of Neuroendocrine Tumors
Abstract
Somatostatin receptors (SSTRs) are overexpressed in a wide variety of cancers such as neuroendocrine tumors (NETs), but the expression in normal cells is relatively low. Therefore, SSTRs serve a potential target for molecular imaging and therapeutic applications of NETs. This review presents the development of somatostatin analog-labeled with gamma-emitting radionuclides such as 111In, 99mTc, and 123I for the visualization of NETs via single-photon emission tomography (SPECT). Additionally, the development of somatostatin analog-radiolabeled with positron emitting radionuclide such as 68Ga for the molecular imaging of NETs with positron emission tomography (PET) is also presented herein. Moreover, this review describes 177Lu-, 90Y-, and 111In-labeled somatostatin analogs as peptide receptor radionuclide therapy (PRRT) agents for the therapeutic application of NETs. These radiolabeled-somatostatin analogs showed promising results with good images quality and high tumor uptake. These results highlight the potential application of radiopharmaceuticals-based somatostatin analogs for the molecular imaging and targeted treatment of NETs.
References
Ambrosini, V., Campana, D., Tomassetti, P., Grassetto, G., Rubello, D., & Fanti, S. (2011). PET/CT with 68Gallium-DOTA-peptides in NET: An overview. European Journal of Radiology, 80(2), e116–e119. https://doi.org/10.1016/j.ejrad.2010.07.022
Ambrosini, V., Fani, M., Fanti, S., Forrer, F., & Maecke, H. R. (2011). Radiopeptide imaging and therapy in Europe. J Nucl Med, 52(12 (Suppl)), 42S-55S. https://doi.org/10.2967/jnumed.110.085753
Ametamey, S. M., Honer, M., & Schubiger, P. A. (2008). Molecular imaging with PET. Chemical Reviews, 108(5), 1501–1516. https://doi.org/10.1021/cr0782426
Authorization Details for SomaKit TOC® in Europe. (n.d.). Retrieved August 25, 2020, from https://www.ema.europa.eu/en/documents/overview/somakit-toc-epar-summary-public_en.pdf
Authorization Details of IASOTOC ®. (n.d.). Retrieved August 25, 2020, from http://www.iason.eu/produkte/iasotoc.html#page-top
Bakker, W. ., Krenning, E. P., Breeman, W. A., & Al., E. (1990). Receptor scintigraphy with radioiodinated somatostatin analogue: radiolabeling, purification, biologic activity, and in vivo application in animals. J Nucl Med, 31, 1501–1509.
Banerjee, S., Pillai, M. R. A., & Knapp, F. F. (2015). Lutetium-177 therapeutic radiopharmaceuticals: linking chemistry, radiochemistry, and practical applications. Chemical Reviews, 115(8), 2934–2974. https://doi.org/10.1021/cr500171e
Bodei, L, Ferone, D., Grana, C. M., Cremonesi, M., Signore, A., Dierckx, R. A., & Paganelli, G. (2009). Peptide receptor therapies in neuroendocrine tumors. J. Endocrinol Invest, 32(4), 360–369.
Bodei, Lisa, Cremonesi, M., Grana, C. M., Chinol, M., Baio, S. M., Severi, S., & Paganelli, G. (2012). Yttrium-labelled peptides for therapy of NET. European Journal of Nuclear Medicine and Molecular Imaging, 39(Suppl 1), S93–S102. https://doi.org/10.1007/s00259-011-2002-y
Breeman, W. A. P. (2012). Practical aspects of labeling DTPA-and DOTA-peptides with 90Y, 111In, 177Lu, 68Ga for peptide-receptor scintigraphy and peptide-receptor radionuclide therapy in preclinical and clinical applications. University of New Mexico Health Sciences Center, College of Pharmacy, 16(0039), 1–34.
Breeman, W., de Jong, M., Kwekkeboom, D., Valkema, R., Bakker, W., Kooij, P., … Krenning, E. (2001). Somatostatin receptor-mediated imaging and therapy: basic science, current knowledge, limitations and future perspectives. Eur J Nucl Med, 28(9), 1421–1429.
Capello, A., Krenning, E., Bernard, B., Reubi, J. C., Breeman, W., & De Jong, M. (2005). 111In-labelled somatostatin analogues in a rat tumour model: Somatostatin receptor status and effects of peptide receptor radionuclide therapy. European Journal of Nuclear Medicine and Molecular Imaging, 32(11), 1288–1295. https://doi.org/10.1007/s00259-005-1877-x
Chong, H.-S., Garmestani, K., Ma, D., Milenic, D. E., Overstreet, T., & Brechbiel, M. W. (2002). Synthesis and biological evaluation of novel macrocyclic ligands with pendent donor groups as potential yttrium chelators for radioimmunotherapy with improved complex formation kinetics. J. Med. Chem., 45(16), 3458–3464.
Cooper, M. S., Sabbah, E., & Mather, S. J. (2006). Conjugation of chelating agents to proteins and radiolabeling with trivalent metallic isotopes. Nat. Protoc, 1, 314–317.
Cremonesi, M., Ferrari, M. E., Bodei, L., Chiesa, C., Sarnelli, A., Garibaldi, C., … Botta, F. (2018). Correlation of dose with toxicity and tumour response to 90Y- and 177Lu-PRRT provides the basis for optimization through individualized treatment planning. Eur J Nucl Med Mol Imaging, 45(13), 2426–2441.
Dadachova, E. (2010). Cancer therapy with alpha-emitters labeled peptides. Semin Nucl Med, 40(3), 204–208. https://doi.org/10.1053/j.semnuclmed.2010.01.002
Das, S., Al-toubah, T., El-haddad, G., & Strosberg, J. (2019). 177Lu-DOTATATE for the treatment of gastroenteropancreatic neuroendocrine tumors. Expert Rev Gastroenterol Hepatol., 13(11), 1023–1031. https://doi.org/10.1080/17474124.2019.1685381.177
Dash, A., & Chakravarty, R. (2019). Radionuclide generators : the prospect of availing PET radiotracers to meet current clinical needs and future research demands. Am J Nucl Med Mol Imaging, 9(1), 30–66.
De Jong, M., Bakker, W. H., Breeman, W. A. P., Bernard, B. F., Hofland, L. J., Visser, T. J., … Krenning, E. P. (1998). Pre-clinical comparison of [DTPA0] octreotide, [DTPA0,Tyr3] octreotide and [DOTA0,Tyr3] octreotide as carriers for somatostatin receptor-targeted scintigraphy and radionuclide therapy. International Journal of Cancer, 75(3), 406–411. https://doi.org/10.1002/(SICI)1097-0215(19980130)75:3<406::AID-IJC14>3.0.CO;2-6
De Jong, M., Breeman, W. A. P., Bernard, B. F., Bakker, W. H. B., Chaar, M. S., Van Gameren, A. V, … Krenning, E. P. (2001). [177Lu-DOTA0,Tyr3]octreotate for somatostatin receptor-targeted radionuclide therapy. Int. J. Cancer, 92, 628–633.
De León-Rodríguez, L. M., & Kovacs, Z. (2008). The synthesis and chelation chemistry of DOTA-peptide conjugates. Bioconjugate Chemistry, 19(2), 391–402. https://doi.org/10.1021/bc700328s
Deveci, E. K., Ocak, M., Bozkurt, M. F., Türker, S., Kabasakal, L., & Uğur, Ö. (2013). The diagnostic efficiency of 99mTc-EDDA/HYNIC-Octreotate SPECT-CT in comparison with 111In-Pentetrotide in the detection of neuroendocrine tumours. Molecular Imaging and Radionuclide Therapy, 22(3), 76–84. https://doi.org/10.4274/mirt.68552
Duijzentkunst, D. A. S., Kwekkeboom, D. J., & Bodei, L. (2017). Somatostatin receptor 2-targeting compounds. Journal of Nuclear Medicine, 58(9), 54S-60S. https://doi.org/10.2967/jnumed.117.191015
Elschot, M., Vermolen, B. J., Lam, M. G., de Keizer, B., van den Bosch, M. A., & de Jong, H. W. (2013). Quantitative comparison of PET and bremsstrahlung SPECT for imaging the in vivo Yttrium-90 microsphere distribution after liver radioembolization. PLoS One, 8(2), e55742. https://doi.org/10.1371/journal.pone.0055742
Fani, M., Maecke, H. R., & Okarvi, S. M. (2012). Radiolabeled peptides: valuable tools for the detection and treatment of cancer. Theranostics, 2(5), 481–501. https://doi.org/10.7150/thno.4024
Fani, Melpomeni, Nicolas, G. P., & Wild, D. (2017). Somatostatin receptor antagonists for imaging and therapy. J Nucl Med, 58, 61S-66S. https://doi.org/10.2967/jnumed.116.186783
FDA letter of approval of NETSPOT TM (Somakit-TATE), a Kit for the Preparation of Gallium Ga68 Dotatate for Neuroendocrine Tumor Detection. (2016). Retrieved August 25, 2020, from https://www.globenewswire.com/news-release/2016/06/02/845561/0/en/Advanced-Accelerator-Applications-Announces-FDA-Approval-of-NETSPOT-Somakit-TATE-a-Kit-for-the-Preparation-of-Gallium-Ga-68-Dotatate-for-Neuroendocrine-Tumor-Detection.html
FDA, U. S. (2019). FDA letter of approval for [68Ga]Ga-DOTA-TOC. Retrieved August 25, 2020, from https://www.accessdata.fda.gov/drugsatfda_docs/appletter/2019/210828Orig1s000ltr.pdf
Fischman, A. J., Babich, J. W., & Strauss, H. W. (1993). A ticket to ride: peptide radiopharmaceuticals. J Nucl Med, 34(12), 2253–2263.
Ginj, M., Zhang, H., Waser, B., Cescato, R., Wild, D., Wang, X., … Reubi, J. C. (2006). Radiolabeled somatostatin receptor antagonists are preferable to agonists for in vivo peptide receptor targeting of tumors. PNAS, 103(44), 16436–16441.
Gomes-Porras, M., Cárdenas-Salas, J., & Álvarez-Escolá, C. (2020). Somatostatin analogs in clinical practice: A review. International Journal of Molecular Sciences, 21(5), 1682. https://doi.org/10.3390/ijms21051682
Graham, M. M., & Menda, Y. (2011). Radiopeptide imaging and therapy in the United States. Journal of Nuclear Medicine, 52, 56S-63S. https://doi.org/10.2967/jnumed.110.085746
Günther, T., Tulipano, G., Dournaud, P., Bousquet, C., Csaba, Z., Kreienkamp, H.-J., … Schulz, S. (2018). International union of basic and clinical pharmacology. CV. somatostatin receptors: structure, function, ligands, and new nomenclature. Pharmacological Reviews, 70(4), 763–835. https://doi.org/10.1124/pr.117.015388
Hennrich, U., & Benešová, M. (2020). [68Ga]Ga-DOTA-TOC: The first FDA-approved 68Ga-radiopharmaceutical for PET imaging. Pharmaceuticals (Basel), 13(3), 38.
Hennrich, U., & Kopka, K. (2019). Lutathera®: the first FDA-and EMA-approved radiopharmaceutical for peptide receptor radionuclide therapy. Pharmaceuticals, 12(3), 114. https://doi.org/10.3390/ph12030114
Henze, M., Dimitrakopoulou-strauss, A., Milker-zabel, S., Schuhmacher, J., Strauss, L. G., Doll, J., … Haberkorn, U. (2005). Characterization of 68Ga-DOTA-D-Phe1-Tyr3-Octreotide kinetics in patients with meningiomas. J Nucl Med, 46(5), 763–770.
Hofmann, M., Maecke, H., Börner, A. R., Weckesser, E., Schöffski, P., Oei, M. L., … Knapp, W. H. (2001). Biokinetics and imaging with the somatostatin receptor PET radioligand 68Ga-DOTATOC: Preliminary data. Eur J Nucl Med, 28(12), 1751–1757. https://doi.org/10.1007/s002590100639
Hubalewska-Dydejczky, A. Fross-Baron, K., Mikolajczak, R., Maecke, H. R., Huszno, B., Pach, D., Sowa-Staszczak, A., … Kulig, J. (2006). 99mTc-EDDA/HYNIC-octreotate scintigraphy, an efficient method for the detection and staging of carcinoid tumours: results of 3 years’ experience. Eur J Nucl Med Mol Imaging, 33, 1123–33.
Humani, T. S., Sutari, Triningsih, Ramli, M., Ritawidya, R., & Haryuni, R. D. (2017). Preparation of (177Lu-DOTA)
Jacobs, A. H., Li, H., Winkeler, A., Hilker, R., Knoess, C., Rüger, A., … Heiss, W. D. (2003). Pet-based molecular imaging in neuroscience. European Journal of Nuclear Medicine and Molecular Imaging, 30(7), 1051–1065. https://doi.org/10.1007/s00259-003-1202-5
Jalilian, A. R. (2016). An overview on Ga-68 radiopharmaceuticals for positron emission tomography applications. Iranian Journal of Nuclear Medicine, 24(1), 1–10.
Jamar, F., Barone, R., Mathieu, I., Walrand, S., Labar, D., Carlier, P., … Pauwels, S. (2003). 86Y-DOTA0-D-Phe1-Tyr3-octreotide (SMT487) – a phase 1 clinical study: pharmacokinetics, biodistribution and renal protective effect of different regimens of amino acid co-infusion. Eur J Nucl Med Mol Imaging, 30(4), 510–518.
Jamous, M., Haberkorn, U., & Mier, W. (2013). Synthesis of peptide radiopharmaceuticals for the therapy and diagnosis of tumor diseases. Molecules, 18(3), 3379–3409. https://doi.org/10.3390/molecules18033379
Kabasakal, L., Demirci, E., Ocak, M., Decristoforo, C., Araman, A., Ozsoy, Y., … Kanmaz, B. (2012). Comparison of 68Ga-DOTATATE and 68Ga-DOTANOC PET/CT imaging in the same patient group with neuroendocrine tumours. European Journal of Nuclear Medicine and Molecular Imaging, 39(8), 1271–1277. https://doi.org/10.1007/s00259-012-2123-y
Kaltsas, G. A., Papadogias, D., Makras, P., & Grossman, A. B. (2005). Treatment of advanced neuroendocrine tumours with radiolabelled somatostatin analogues. Endocrine-Related Cancer, 12(4), 683–699. https://doi.org/10.1677/erc.1.01116
Kim, Y. C., Kim, Y. H., Uhm, S. H., Seo, Y. S., Park, E. K., Oh, S. Y., … Choe, J. G. (2010). Radiation safety issues in Y-90 microsphere selective hepatic radioembolization therapy: Possible radiation exposure from the patients. Nuclear Medicine and Molecular Imaging, 44(4), 252–260. https://doi.org/10.1007/s13139-010-0047-7
Kim, Y. C., Kim, Y. H., Um, S. H., Seo, Y. S., Park, E. K., Oh, S. Y., … Choe, J. G. (2011). Usefulness of bremsstrahlung images after intra-arterial Y-90 resin microphere radioembolization for hepatic tumors. Nuclear Medicine and Molecular Imaging, 45(1), 59–67. https://doi.org/10.1007/s13139-010-0066-4
Knapp, F. F. (Russ) J. (2009). Lutetium-177-broad production capabilities are expected to stimulate clinical applications of this important therapeutic radioisotope. Retrieved October 12, 2020, from https://inis.iaea.org/collection/NCLCollectionStore/_Public/43/004/43004236.pdf?r=1
Krenning, E. ., Kwekkeboom, D. ., Bakker, W. ., Breeman, W. A. ., Kooji, P. P. ., Oei, H. ., … Lamberts, S. (1993). Somatostatin receptor scintigraphy with [111In-DTPA-d-Phe1]- and [123I-Tyr3]-octreotide: the Rotterdam experience with more than 1000 patients. Eur J Nucl Med, 20(8), 716–731.
Krenning, E., Bakker, W., Breeman, W., Koper, J., Kooij, P., Ausema, L., … Lamberts, S. (1989). Localisation of endocrine-related tumours with radioiodinated analogue of somatostatin. The Lancet, 333(8632), 242–244.
Ku, A., Facca, V. J., Cai, Z., & Reilly, R. M. (2019). Auger electrons for cancer therapy – a review. EJNMMI Radiopharmacy and Chemistry, 4, 27. https://doi.org/10.1186/s41181-019-0075-2
Kuzmanovska, S., Vaskova, O., & Zdraveska Kocovska, M. (2011). “In-house” preparation of 99mTc-EDDA/HYNIC-TOC, a specific targeting agent for somatostatin receptor scintigraphy. Macedonian Pharmaceutical Bulletin, 57(1,2), 65–70. https://doi.org/10.33320/maced.pharm.bull.2011.57.007
Kwekkeboom, D., Krenning, E. P., & De Jong, M. (2000). Peptide receptor imaging and therapy. Journal of Nuclear Medicine, 41(10), 1704–1713.
Lamberts, S. W., Bakker, W. H., Reubi, J. C., & Krenning, E. P. (1990). Somatostatin-receptor imaging in the localization of endocrine tumors. N Engl J Med, 323(18), 1246–1249.
Lobrano, M. B., & Singha, P. (2003). Positron emission tomography in oncology. Clinical Journal of Oncology NUrsing, 7(4), 379–385. https://doi.org/10.1093/bmb/ldl013
Lystad, R. P., & Pollard, H. (2009). Functional neuroimaging: a brief overview and feasibility for use in chiropractic research. The Journal of the Canadian Chiropractic Association, 53(1), 59–72.
Maecke, H. R. (2005). Radiolabeled peptides in nuclear oncology: influence of peptide structure and labeling strategy on pharmacology. In A. A. Bogdanov & K. Licha (Eds.), Molecular Imaging (pp. 43–72). Ernst Schering Res Found Workshop, vol 49. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26809-x_3
Maina, T., Nock, B., Nikolopoulou, A., & Al., E. (2002). [99mTc]Demotate, a new 99mTc-based [Tyr3]octreotate analogue for the detection of somatostatin receptor-positive tumours: synthesis and preclinical results. Eur J Nucl Med, 29(6), 742–753.
Marketing Authorization for TOCscan® (68Ga-Edotreotide ) in Germany, Austria and France. (2018). Retrieved August 25, 2020, from https://itm-radiopharma.com/fileadmin/user_upload/news/PR_ITM_receives_Marketing_Authorization_for_TOCscan.pdf
Menda, Y., & Kahn, D. (2002). Somatostatin receptor imaging of non-small cell lung cancer with 99mTc depreotide. Semin Nucl Meduclear Medicine, 32(2), 92–96. https://doi.org/10.1053/snuc.2002.31564
Mikolajczak, R. (2009). Technetium-99m labeled somatostatin analogues and their role in the management of patients with neuroendocrine tumors. World Journal of Nuclear Medicine, 8(3), 141–142.
Mikołajczak, R., & Maecke, H. R. (2016). Radiopharmaceuticals for somatostatin receptor imaging. Nuclear Medicine Review, 19(2), 126–132. https://doi.org/10.5603/NMR.2016.0024
Mittra, E. S. (2018). Neuroendocrine tumor therapy: 177Lu-DOTATATE. AJR, 211(2), 278–285. https://doi.org/10.2214/AJR.18.19953
Navalkissoor, S., & Grossman, A. (2019). Targeted alpha particle therapy for neuroendocrine tumours: the next generation of peptide receptor radionuclide therapy. Neuroendocrinology, 108(3), 256–264. https://doi.org/10.1159/000494760
Okarvi, S. M. (2004). Peptide-based radiopharmaceuticals: future tools for diagnostic imaging of cancers and other diseases. Medicinal Research Reviews, 24(3), 357–397. https://doi.org/10.1002/med.20002
Okarvi, S. M. (2008). Peptide-based radiopharmaceuticals and cytotoxic conjugates: Potential tools against cancer. Cancer Treatment Reviews, 34, 13–26. https://doi.org/10.1016/j.ctrv.2007.07.017
Oronsky, B., Ma, P. C., Morgensztern, D., & Carter, C. A. (2017). Nothing but NET: a review of neuroendocrine tumors and carcinomas. Neoplasia, 19(12), 991–1002. https://doi.org/10.1016/j.neo.2017.09.002
Otte, A., Jermann, E., Behe, M., Goetze, M., Bucher, H. C., Roser, H. W., … Maecke, H. R. (1997). DOTATOC: a powerful new tool for receptor-mediated radionuclide therapy. Eur J Nucl Med., 24, 792–795.
Paans, A. M. J., & Vaalburg, W. (2000). Positron emission tomography imaging and drug development. Current Pharmaceutical Design, 6, 1583–1591.
Palangka, C. R. A. P., Hanaoka, H., Yamaguchi, A., Murakami, T., & Tsushima, Y. (2019). Al18F-labeled alpha-melanocyte-stimulating hormone (α-MSH) peptide derivative for the early detection of melanoma. Annals of Nuclear Medicine, 33(10), 733–739. https://doi.org/10.1007/s12149-019-01383-4
Patel, Y. C. (1999). Somatostatin and its receptor family. Frontiers in Neuroendocrinology, 20(3), 157–198. https://doi.org/10.1006/frne.1999.0183
Phelps, M. E. (2000). Positron emission tomography provides molecular imaging of biological processes. Proceedings of the National Academy of Sciences of the United States of America, 97(16), 9226–9233. https://doi.org/10.1073/pnas.97.16.9226
Poeppel, T. D., Binse, I., Petersenn, S., Lahner, H., Schott, M., Antoch, G., … Boy, C. (2011). Functional imaging of neuroendocrine tumors. J Nucl Med, 52(12), 1864–1870. https://doi.org/10.2967/jnumed.111.091165
Pool, S. E., Kam, B. L. R., Koning, G. A., Konijnenberg, M., ten Hagen, T. L. M., Breeman, W. A. P., … van Eijck, C. H. J. (2014). [111In-DTPA]octreotide tumor uptake in GEPNET liver metastases after intra-arterial administration: an overview of preclinical and clinical observations and implications for tumor radiation dose after peptide radionuclide therapy. Cancer Biother Radiopharm, 29(4), 179–187. https://doi.org/10.1089/cbr.2013.1552
Ramli, M., Hidayat, B., Rustendi, C. T., Subur, M., Ardiyatno, C. N., Karyadi, … Masjhur, J. S. (2012). In Vitro and In Vivo testing of 177Lu-DOTA-nimotuzumab, a potential radioimmunotherapeutical agent of cancers. ITB Journal of Science, 44 A(4). https://doi.org/10.5614/itbj.sci.2012.44.4.4
Ramli, Martalena, Hidayat, B., Ardiyatno, C. N., Aguswarini, S., Rustendi, C. T., Subur, M., … Ritawidya, R. (2011). Preclinical study of 177 Lu-DOTA-trastuzumab , a potential radiopharmaceutical for therapy of breast cancer positive HER-2, 2011(November), 19413.
Reubi, J. C. (2003). Peptide receptors as molecular targets for cancer diagnosis and therapy. Endocrine Reviews, 24(4), 389–427. https://doi.org/10.1210/er.2002-0007
Reubi, J. C. (2004). Somatostatin and other peptide receptors as tools for tumor diagnosis and treatment. Neuroendocrinology, 80(suppl 1), 51–56. https://doi.org/10.1159/000080742
Reubi, J. C., Schär, J., Waser, B., Wenger, S., Heppeler, A., Schmitt, J. S., & Mäcke, H. R. (2000). Affinity profiles for human somatostatin receptor subtypes SST1 – SST5 of somatostatin radiotracers selected for scintigraphic and radiotherapeutic use. Eur J Nucl Med., 27, 273–282.
Ritawidya, R.; Wenzel, B.; Teodoro, R.; Toussaint, M.; Kranz, M.; Deuther-Conrad, W.; Dukic-Stefanovic, S.; Ludwig, F.-A.; Scheunemann, M.; Brust, P. (2019). Radiosynthesis and biological investigation of a novel fluorine-18 labeled benzoimidazotriazine-based radioligand for the imaging of phosphodiesterase 2A with positron emission tomography. Molecules, 24, 4149.
Ritawidya, R., Sutari, S., Setiyowati, S., Subur, M., Alwi, Y., Susilo, V. Y., … Ramli, M. (2016). Synthesis of DOTA-TOC conjugate as a precursor of 177Lu-DOTA-TOC radiopharmaceutical for therapy and diagnosis of somatostation receptor positive cancer. Majalah Polymer Indonesia, 19(1), 1–14.
Rufini, V., Calcagni, M. L., & Baum, R. P. (2006). Imaging of neuroendocrine Tumors. Semin Nucl Med, 36(3), 228–247. https://doi.org/10.1053/j.semnuclmed.2006.03.007
Schottelius, M., & Wester, H. J. (2009). Molecular imaging targeting peptide receptors. Methods, 48(2), 161–177. https://doi.org/10.1016/j.ymeth.2009.03.012
Sofou, S. (2008). Radionuclide carriers for targeting of cancer. International Journal of Nanomedicine, 3(2), 181–199. https://doi.org/10.2147/ijn.s2736
Srirajaskanthan, R., Kayani, I., Quigley, A. M., Soh, J., Caplin, M. E., & Bomanji, J. (2010). The role of 68Ga-DOTATATE PET in patients with neuroendocrine tumors and negative or equivocal findings on 111In-DTPA-octreotide scintigraphy. Journal of Nuclear Medicine, 51(6), 875–882. https://doi.org/10.2967/jnumed.109.066134
Standford University. (n.d.). In-111 Radionuclide Fact Sheet. Retrieved September 16, 2020, from https://ehs.stanford.edu/reference/in-111-radionuclide-fact-sheet
Sugiura, G., Kühn, H., Sauter, M., Haberkorn, U., & Mier, W. (2014). Radiolabeling strategies for tumor-targeting proteinaceous drugs. Molecules, 19(2), 2135–2165. https://doi.org/10.3390/molecules19022135
Thundimadathil, J. (2012). Cancer treatment using peptides: current therapies and future prospects. Journal of Amino Acids, 2012, 1–13. https://doi.org/10.1155/2012/967347
Tsoli, M., Chatzellis, E., Koumarianou, A., Kolomodi, D., & Kaltsas, G. (2019). Current best practice in the management of neuroendocrine tumors. Therapeutic Advances in Endocrinology and Metabolism, 10, 1–18. https://doi.org/10.1177/https
Turner, J. H. (2018). An introduction to the clinical practice of theranostics in oncology. British Journal of Radiology, 91(1091), 1–9. https://doi.org/10.1259/bjr.20180440
Turner, R., & Jones, T. (2003). Techniques for imaging neuroscience. British Medical Bulletin, 65, 3–20. https://doi.org/10.1093/bmb/65.1.3
Valkema, R., De Jong, M., Bakker, W. H., Breeman, W. A. P., Kooij, P. P. M., Lugtenburg, P. J., … Krenning, E. P. (2002). Phase I study of peptide receptor radionuclide therapy with [111In-DTPA0]octreotide: The Rotterdam experience. Seminars in Nuclear Medicine, 32(2), 110–122. https://doi.org/10.1053/snuc/2002.31025
Van Essen, M., Krenning, E. P., De Jong, M., Valkema, R., & Kwekkeboom, D. J. (2007). Peptide receptor radionuclide therapy with radiolabelled somatostatin analogues in patients with somatostatin receptor positive tumours. Acta Oncologica, 46(6), 723–734. https://doi.org/10.1080/02841860701441848
Velikyan, I. (2014). Prospective of 68Ga-Radiopharmaceutical development. Theranostics, 4(1), 47–80. https://doi.org/10.7150/thno.7447
Velikyan, I., Xu, H., Nair, M., & Hall, H. (2012). Robust labeling and comparative preclinical characterization of DOTA-TOC and DOTA-TATE. Nuclear Medicine and Biology, 39(5), 628–639. https://doi.org/10.1016/j.nucmedbio.2011.12.010
Wang, Li-fan, Lin, L., Wang, M., & Li, Y. (2005). The therapeutic efficacy of 177 Lu-DOTATATE/ DOTATOC in advanced neuroendocrine tumors.
Wang, Ling, Tang, K., Zhang, Q., Li, H., Wen, Z., Zhang, H., & Zhang, H. (2013). Somatostatin receptor-based molecular imaging and therapy for neuroendocrine tumors. BioMed Research International, 2013. https://doi.org/10.1155/2013/102819
Wängberg, B., Nilsson, O., Johanson, V., Kölby, L., Forssell‐Aronsson, E., Andersson, P., … Ahlman, H. (1997). Somatostatin receptors in the diagnosis and therapy of neuroendocrine tumors. The Oncologist, 2, 50–58. https://doi.org/10.1634/theoncologist.2-1-50
Widyastuti, W., Roseliana, A., Taufik, C., & Aguswarini, S. (2007). Preparasi 99mTc-HYNIC-TOC dan pencitraan pada pasien tumor. In Prosiding PPI-PDIPTN, Pustek Akselerator dan Proses Bahan - BATAN (pp. 89–94).
Wild, D., Bomanji, J. B., Benkert, P., Maecke, H., Ell, P. J., Reubi, J. C., & Caplin, M. E. (2013). Comparison of 68Ga-DOTANOC and 68Ga-DOTATATE PET/CT within patients with gastroenteropancreatic neuroendocrine tumors. J. Nucl. Med, 54(3), 364–373. https://doi.org/10.2967/jnumed.112.111724
Worm, D. J., Els‐Heindl, S., & Beck‐Sickinger, A. G. (2020). Targeting of peptide‐binding receptors on cancer cells with peptide‐drug conjugates. Peptide Science, 112, e24171. https://doi.org/10.1002/pep2.24171
Wright, C. L., Zhang, J., Tweedle, M. F., Knopp, M. V., & Hall, N. C. (2015). Theranostic imaging of yttrium-90. BioMed Research International, 2015, 481279,. https://doi.org/10.1155/2015/481279
Wuest, F. (2005). Aspects of positron emission tomography radiochemistry as relevant for food chemistry. Amino Acids, 29, 323–339. https://doi.org/10.1007/s00726-005-0201-1
Yeole, M. P., Dhole, S. N., & Kulkarni, N. S. (2013). Peptide nanomedicine in cancer treatment. Asian Journal of Pharmaceutical and Clinical Research, 6(Suppl 2), 28–32.
Zhang, H., Moroz, M. A., Serganova, I., Ku, T., Huang, R., Vider, J., … Smith-Jones, P. M. (2011). Imaging expression of the human somatostatin receptor subtype-2 reporter gene with 68Ga-DOTATOC. Journal of Nuclear Medicine, 52(1), 123–131. https://doi.org/10.2967/jnumed.110.079004