Therapeutic Importance of Curcumin with a Special Emphasis on MDR Cancer Cells and the Factors Influencing Pharmacodynamics
Abstract
Curcuma longa or turmeric is a plant that is used as a spice and as a phytoconstituent in many formulations from Vedic age. Curcuminoids are the most important Phyto constituents present in turmeric with various pharmacological activities. The present study reveals various pharmacological activities of curcumin with special emphasis on MDR cancer cells. The curcuminoids are the Phyto constituents showing potent activity against neurological disorders, cardio vascular diseases, auto immune disorders, Metabolic disorders, cancer, inflammatory diseases, Skin allergies and disorders. This review give emphasis on anticancer activity of curcumin and its possible mechanism of actions. Many studies revealing that various formulations and combination therapy of curcumin is increasing its bioavailability and there by effective against various diseases. This review is lighting to a treasure buried inside the soil a potential therapeutic agent without side effects.
References
Alappat, L., & Awad, A. B. (2010). Curcumin and obesity: Evidence and mechanisms. Nutrition Reviews, 68(12), 729–738. https://doi.org/10.1111/j.1753-4887.2010.00341.x
Analysis of different innovative formulations of curcumin for improved relative oral bioavailability in human subjects | SpringerLink. (n.d.). Retrieved 6 March 2021, from https://link.springer.com/article/10.1007/s00394-016-1376-9
Antimicrobial activity of Curcuma longa aqueous extract. (n.d.). Retrieved 30 July 2021, from https://www.cabdirect.org/cabdirect/abstract/20093285255
Antony, B., Merina, B., Iyer, V. S., Judy, N., Lennertz, K., & Joyal, S. (2008). A Pilot Cross-Over Study to Evaluate Human Oral Bioavailability of BCM-95®CG (BiocurcumaxTM), A Novel Bioenhanced Preparation of Curcumin. Indian Journal of Pharmaceutical Sciences, 70(4), 445–449. https://doi.org/10.4103/0250-474X.44591
Barthelemy, S., Vergnes, L., Moynier, M., Guyot, D., Labidalle, S., & Bahraoui, E. (1998). Curcumin and curcumin derivatives inhibit Tat-mediated transactivation of type 1 human immunodeficiency virus long terminal repeat. Research in Virology, 149(1), 43–52. https://doi.org/10.1016/S0923-2516(97)86899-9
Chiu, J., Khan, Z. A., Farhangkhoee, H., & Chakrabarti, S. (2009). Curcumin prevents diabetes-associated abnormalities in the kidneys by inhibiting p300 and nuclear factor-κB. Nutrition, 25(9), 964–972. https://doi.org/10.1016/j.nut.2008.12.007
Chongtham, A., & Agrawal, N. (2016). Curcumin modulates cell death and is protective in Huntington’s disease model. Scientific Reports, 6(1), 18736. https://doi.org/10.1038/srep18736
Cuomo, J., Appendino, G., Dern, A. S., Schneider, E., McKinnon, T. P., Brown, M. J., Togni, S., & Dixon, B. M. (2011). Comparative Absorption of a Standardized Curcuminoid Mixture and Its Lecithin Formulation. Journal of Natural Products, 74(4), 664–669. https://doi.org/10.1021/np1007262
Curcumin, a Known Phenolic from Curcuma longa, Attenuates the Virulence of Pseudomonas aeruginosa PAO1 in Whole Plant and Animal Pathogenicity Models | Journal of Agricultural and Food Chemistry. (n.d.). Retrieved 30 July 2021, from https://pubs.acs.org/doi/abs/10.1021/jf072591j
Curcumin improves the paclitaxel‑induced apoptosis of HPV‑positive human cervical cancer cells via the NF‑κB‑p53‑caspase‑3 pathway. (n.d.). Retrieved 6 March 2021, from https://www.spandidos-publications.com/10.3892/etm.2015.2240
Curcumin Inhibits SK-Hep-1 Hepatocellular Carcinoma Cell Invasion in vitro and Suppresses Matrix Metalloproteinase-9 Secretion—Abstract—Oncology 1998, Vol. 55, No. 4—Karger Publishers. (n.d.). Retrieved 6 March 2021, from https://www.karger.com/Article/Abstract/11876
Divya, C. S., & Pillai, M. R. (2006). Antitumor action of curcumin in human papillomavirus associated cells involves downregulation of viral oncogenes, prevention of NFkB and AP-1 translocation, and modulation of apoptosis. Molecular Carcinogenesis, 45(5), 320–332. https://doi.org/10.1002/mc.20170
Eid, S. Y., El-Readi, M. Z., & Wink, M. (2012). Synergism of three-drug combinations of sanguinarine and other plant secondary metabolites with digitonin and doxorubicin in multi-drug resistant cancer cells. Phytomedicine, 19(14), 1288–1297. https://doi.org/10.1016/j.phymed.2012.08.010
Enhanced oral bioavailability and anticancer activity of novel curcumin loaded mixed micelles in human lung cancer cells—ScienceDirect. (n.d.). Retrieved 1 March 2021, from https://www.sciencedirect.com/science/article/abs/pii/S0944711315002512
Enrico, C. (2019). Chapter 3—Nanotechnology-Based Drug Delivery of Natural Compounds and Phytochemicals for the Treatment of Cancer and Other Diseases. In Atta-ur-Rahman (Ed.), Studies in Natural Products Chemistry (Vol. 62, pp. 91–123). Elsevier. https://doi.org/10.1016/B978-0-444-64185-4.00003-4
Evaluation of the efficacy of paclitaxel with curcumin combination in ovarian cancer cells. (n.d.). Retrieved 1 March 2021, from https://www.spandidos-publications.com/ol/12/5/3944
Faden, A. I., Wu, J., Stoica, B. A., & Loane, D. J. (2016). Progressive inflammation-mediated neurodegeneration after traumatic brain or spinal cord injury. British Journal of Pharmacology, 173(4), 681–691. https://doi.org/10.1111/bph.13179
Foryst-Ludwig, A., Neumann, M., Schneider-Brachert, W., & Naumann, M. (2004). Curcumin blocks NF-κB and the motogenic response in Helicobacter pylori-infected epithelial cells. Biochemical and Biophysical Research Communications, 316(4), 1065–1072. https://doi.org/10.1016/j.bbrc.2004.02.158
Funk, J. L., Oyarzo, J. N., Frye, J. B., Chen, G., Lantz, R. C., Jolad, S. D., Sólyom, A. M., & Timmermann, B. N. (2006). Turmeric Extracts Containing Curcuminoids Prevent Experimental Rheumatoid Arthritis. Journal of Natural Products, 69(3), 351–355. https://doi.org/10.1021/np050327j
Ganjali, S., Dallinga-Thie, G. M., Simental-Mendía, L. E., Banach, M., Pirro, M., & Sahebkar, A. (2017). HDL functionality in type 1 diabetes. Atherosclerosis, 267, 99–109. https://doi.org/10.1016/j.atherosclerosis.2017.10.018
Garcia‐Alloza, M., Borrelli, L. A., Rozkalne, A., Hyman, B. T., & Bacskai, B. J. (2007). Curcumin labels amyloid pathology in vivo, disrupts existing plaques, and partially restores distorted neurites in an Alzheimer mouse model. Journal of Neurochemistry, 102(4), 1095–1104. https://doi.org/10.1111/j.1471-4159.2007.04613.x
Gota, V. S., Maru, G. B., Soni, T. G., Gandhi, T. R., Kochar, N., & Agarwal, M. G. (2010). Safety and Pharmacokinetics of a Solid Lipid Curcumin Particle Formulation in Osteosarcoma Patients and Healthy Volunteers. Journal of Agricultural and Food Chemistry, 58(4), 2095–2099. https://doi.org/10.1021/jf9024807
Grynkiewicz, G., & Ślifirski, P. (2012). Curcumin and curcuminoids in quest for medicinal status. Acta Biochimica Polonica, 59(2), Article 2. https://doi.org/10.18388/abp.2012_2139
Hewlings, S. J., & Kalman, D. S. (2017). Curcumin: A Review of Its’ Effects on Human Health. Foods, 6(10), 92. https://doi.org/10.3390/foods6100092
Hickey, M. A., Zhu, C., Medvedeva, V., Lerner, R. P., Patassini, S., Franich, N. R., Maiti, P., Frautschy, S. A., Zeitlin, S., Levine, M. S., & Chesselet, M.-F. (2012). Improvement of neuropathology and transcriptional deficits in CAG 140 knock-in mice supports a beneficial effect of dietary curcumin in Huntington’s disease. Molecular Neurodegeneration, 7(1), 12. https://doi.org/10.1186/1750-1326-7-12
Holt, P. R., Katz, S., & Kirshoff, R. (2005). Curcumin Therapy in Inflammatory Bowel Disease: A Pilot Study. Digestive Diseases and Sciences, 50(11), 2191–2193. https://doi.org/10.1007/s10620-005-3032-8
Hu, S., Xu, Y., Meng, L., Huang, L., & Sun, H. (2018). Curcumin inhibits proliferation and promotes apoptosis of breast cancer cells. Experimental and Therapeutic Medicine, 16(2), 1266–1272. https://doi.org/10.3892/etm.2018.6345
Im, K., Ravi, A., Kumar, D., Kuttan, R., & Maliakel, B. (2012). An enhanced bioavailable formulation of curcumin using fenugreek-derived soluble dietary fibre. Journal of Functional Foods, 4(1), 348–357. https://doi.org/10.1016/j.jff.2012.01.004
Influence of piperine and quercetin on antidiabetic potential of curcumin in: Journal of Complementary and Integrative Medicine Volume 13 Issue 3 (2016). (n.d.). Retrieved 13 April 2020, from https://www.degruyter.com/view/journals/jcim/13/3/article-p247.xml
Innovative Preparation of Curcumin for Improved Oral Bioavailability. (n.d.). Retrieved 6 March 2021, from https://www.jstage.jst.go.jp/article/bpb/34/5/34_5_660/_article/-char/ja/
Jäger, R., Lowery, R. P., Calvanese, A. V., Joy, J. M., Purpura, M., & Wilson, J. M. (2014). Comparative absorption of curcumin formulations. Nutrition Journal, 13(1), 11. https://doi.org/10.1186/1475-2891-13-11
Karlstetter, M., Lippe, E., Walczak, Y., Moehle, C., Aslanidis, A., Mirza, M., & Langmann, T. (2011). Curcumin is a potent modulator of microglial gene expression and migration. Journal of Neuroinflammation, 8(1), 125. https://doi.org/10.1186/1742-2094-8-125
Keihanian, F., Saeidinia, A., Bagheri, R. K., Johnston, T. P., & Sahebkar, A. (2018). Curcumin, hemostasis, thrombosis, and coagulation. Journal of Cellular Physiology, 233(6), 4497–4511. https://doi.org/10.1002/jcp.26249
Kim, H. J., Yoo, H. S., Kim, J. C., Park, C. S., Choi, M. S., Kim, M., Choi, H., Min, J. S., Kim, Y. S., Yoon, S. W., & Ahn, J. K. (2009). Antiviral effect of Curcuma longa Linn extract against hepatitis B virus replication. Journal of Ethnopharmacology, 124(2), 189–196. https://doi.org/10.1016/j.jep.2009.04.046
Kim, H., Park, B.-S., Lee, K.-G., Choi, C. Y., Jang, S. S., Kim, Y.-H., & Lee, S.-E. (2005). Effects of Naturally Occurring Compounds on Fibril Formation and Oxidative Stress of β-Amyloid. Journal of Agricultural and Food Chemistry, 53(22), 8537–8541. https://doi.org/10.1021/jf051985c
Kondo, A., Takeda, T., Li, B., Tsuiji, K., Kitamura, M., Wong, T. F., & Yaegashi, N. (2013). Epigallocatechin-3-gallate potentiates curcumin’s ability to suppress uterine leiomyosarcoma cell growth and induce apoptosis. International Journal of Clinical Oncology, 18(3), 380–388. https://doi.org/10.1007/s10147-012-0387-7
Koosirirat, C., Linpisarn, S., Changsom, D., Chawansuntati, K., & Wipasa, J. (2010). Investigation of the anti-inflammatory effect of Curcuma longa in Helicobacter pylori-infected patients. International Immunopharmacology, 10(7), 815–818. https://doi.org/10.1016/j.intimp.2010.04.021
Kutluay, S. B., Doroghazi, J., Roemer, M. E., & Triezenberg, S. J. (2008). Curcumin inhibits herpes simplex virus immediate-early gene expression by a mechanism independent of p300/CBP histone acetyltransferase activity. Virology, 373(2), 239–247. https://doi.org/10.1016/j.virol.2007.11.028
Lavoie, S., Chen, Y., Dalton, T. P., Gysin, R., Cuénod, M., Steullet, P., & Do, K. Q. (2009). Curcumin, quercetin, and tBHQ modulate glutathione levels in astrocytes and neurons: Importance of the glutamate cysteine ligase modifier subunit. Journal of Neurochemistry, 108(6), 1410–1422. https://doi.org/10.1111/j.1471-4159.2009.05908.x
Lee, W.-H., Loo, C.-Y., Young, P. M., Traini, D., Mason, R. S., & Rohanizadeh, R. (2014). Recent advances in curcumin nanoformulation for cancer therapy. Expert Opinion on Drug Delivery, 11(8), 1183–1201. https://doi.org/10.1517/17425247.2014.916686
Li, X., Xie, W., Xie, C., Huang, C., Zhu, J., Liang, Z., Deng, F., Zhu, M., Zhu, W., Wu, R., Wu, J., Geng, S., & Zhong, C. (2014). Curcumin Modulates miR-19/PTEN/AKT/p53 Axis to Suppress Bisphenol A-induced MCF-7 Breast Cancer Cell Proliferation. Phytotherapy Research, 28(10), 1553–1560. https://doi.org/10.1002/ptr.5167
Liu, C.-H., & Huang, H.-Y. (2012). Antimicrobial Activity of Curcumin-Loaded Myristic Acid Microemulsions against Staphylococcus epidermidis. Chemical and Pharmaceutical Bulletin, 60(9), 1118–1124. https://doi.org/10.1248/cpb.c12-00220
Liu, T., Chi, H., Chen, J., Chen, C., Huang, Y., Xi, H., Xue, J., & Si, Y. (2017). Curcumin suppresses proliferation and in vitro invasion of human prostate cancer stem cells by ceRNA effect of miR-145 and lncRNA-ROR. Gene, 631, 29–38. https://doi.org/10.1016/j.gene.2017.08.008
Liu, W., Chen, X. D., Cheng, Z., & Selomulya, C. (2016). On enhancing the solubility of curcumin by microencapsulation in whey protein isolate via spray drying. Journal of Food Engineering, 169, 189–195. https://doi.org/10.1016/j.jfoodeng.2015.08.034
Lopresti, A. L., Maes, M., Maker, G. L., Hood, S. D., & Drummond, P. D. (2014). Curcumin for the treatment of major depression: A randomised, double-blind, placebo controlled study. Journal of Affective Disorders, 167, 368–375. https://doi.org/10.1016/j.jad.2014.06.001
Lopresti, A. L., Maes, M., Meddens, M. J. M., Maker, G. L., Arnoldussen, E., & Drummond, P. D. (2015). Curcumin and major depression: A randomised, double-blind, placebo-controlled trial investigating the potential of peripheral biomarkers to predict treatment response and antidepressant mechanisms of change. European Neuropsychopharmacology, 25(1), 38–50. https://doi.org/10.1016/j.euroneuro.2014.11.015
Madhavi, D., & Kagan, D. (2014). Bioavailability of a Sustained Release Formulation of Curcumin. Integrative Medicine: A Clinician’s Journal, 13(3), 24–30.
Mirzabeigi, P., Mohammadpour, A. H., Salarifar, M., Gholami, K., Mojtahedzadeh, M., & Javadi, M. R. (2015). The Effect of Curcumin on some of Traditional and Non-traditional Cardiovascular Risk Factors: A Pilot Randomized, Double-blind, Placebo-controlled Trial. Iranian Journal of Pharmaceutical Research : IJPR, 14(2), 479–486.
Moghaddam, K. M., Iranshahi, M., Yazdi, M. C., & Shahverdi, A. R. (2009). The combination effect of curcumin with different antibiotics against Staphylococcus aureus. International Journal of Green Pharmacy (IJGP), 3(2), Article 2. https://doi.org/10.22377/ijgp.v3i2.70
Mohammad, I. S., Teng, C., Chaurasiya, B., Yin, L., Wu, C., & He, W. (2019). Drug-delivering-drug approach-based codelivery of paclitaxel and disulfiram for treating multidrug-resistant cancer. International Journal of Pharmaceutics, 557, 304–313. https://doi.org/10.1016/j.ijpharm.2018.12.067
Natural agents inhibit colon cancer cell proliferation and alter microbial diversity in mice. (n.d.). Retrieved 6 March 2021, from https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0229823
Oral bioavailability of curcumin: Problems and advancements: Journal of Drug Targeting: Vol 24, No 8. (n.d.). Retrieved 6 March 2021, from https://www.tandfonline.com/doi/abs/10.3109/1061186X.2016.1157883
Orellana-Paucar, A. M., Afrikanova, T., Thomas, J., Aibuldinov, Y. K., Dehaen, W., de Witte, P. A. M., & Esguerra, C. V. (2013). Insights from zebrafish and mouse models on the activity and safety of ar-turmerone as a potential drug candidate for the treatment of epilepsy. PloS One, 8(12), e81634. https://doi.org/10.1371/journal.pone.0081634
Panahi, Y., Kianpour, P., Mohtashami, R., Soflaei, S. S., & Sahebkar, A. (2019). Efficacy of phospholipidated curcumin in nonalcoholic fatty liver disease: A clinical study. Journal of Asian Natural Products Research, 21(8), 798–805. https://doi.org/10.1080/10286020.2018.1505873
Panahi, Y., Rahimnia, A.-R., Sharafi, M., Alishiri, G., Saburi, A., & Sahebkar, A. (2014). Curcuminoid Treatment for Knee Osteoarthritis: A Randomized Double-Blind Placebo-Controlled Trial. Phytotherapy Research, 28(11), 1625–1631. https://doi.org/10.1002/ptr.5174
Peng, S.-F., Lee, C.-Y., Hour, M.-J., Tsai, S.-C., Kuo, D.-H., Chen, F.-A., Shieh, P.-C., & Yang, J.-S. (2014). Curcumin-loaded nanoparticles enhance apoptotic cell death of U2OS human osteosarcoma cells through the Akt-Bad signaling pathway. International Journal of Oncology, 44(1), 238–246. https://doi.org/10.3892/ijo.2013.2175
Prasad, S., & Tyagi, A. K. (2015). Curcumin and its analogues: A potential natural compound against HIV infection and AIDS. Food & Function, 6(11), 3412–3419. https://doi.org/10.1039/C5FO00485C
Prusty, B. K., & Das, B. C. (2005). Constitutive activation of transcription factor AP-1 in cervical cancer and suppression of human papillomavirus (HPV) transcription and AP-1 activity in HeLa cells by curcumin. International Journal of Cancer, 113(6), 951–960. https://doi.org/10.1002/ijc.20668
Rai, D., Singh, J. K., Roy, N., & Panda, D. (2008). Curcumin inhibits FtsZ assembly: An attractive mechanism for its antibacterial activity. Biochemical Journal, 410(1), 147–155. https://doi.org/10.1042/BJ20070891
Ranjan, P., Mohapatra, B., & Das, P. (2020). A rational drug designing: What bioinformatics approach tells about the wisdom of practicing traditional medicines for screening the potential of Ayurvedic and natural compounds for their inhibitory effect against COVID-19 Spike, Indian strain Spike, Papain-like protease and Main Protease protein [Preprint]. In Review. https://doi.org/10.21203/rs.3.rs-30366/v1
Rivera, M., Ramos, Y., Rodríguez-Valentín, M., López-Acevedo, S., Cubano, L. A., Zou, J., Zhang, Q., Wang, G., & Boukli, N. M. (2017). Targeting multiple pro-apoptotic signaling pathways with curcumin in prostate cancer cells. PLOS ONE, 12(6), e0179587. https://doi.org/10.1371/journal.pone.0179587
Sanmukhani, J., Satodia, V., Trivedi, J., Patel, T., Tiwari, D., Panchal, B., Goel, A., & Tripathi, C. B. (2014). Efficacy and Safety of Curcumin in Major Depressive Disorder: A Randomized Controlled Trial. Phytotherapy Research, 28(4), 579–585. https://doi.org/10.1002/ptr.5025
Santos, A. M., Lopes, T., Oleastro, M., Gato, I. V., Floch, P., Benejat, L., Chaves, P., Pereira, T., Seixas, E., Machado, J., & Guerreiro, A. S. (2015). Curcumin Inhibits Gastric Inflammation Induced by Helicobacter Pylori Infection in a Mouse Model. Nutrients, 7(1), 306–320. https://doi.org/10.3390/nu7010306
Scale up, optimization and stability analysis of Curcumin C3 complex-loaded nanoparticles for cancer therapy | SpringerLink. (n.d.). Retrieved 6 March 2021, from https://link.springer.com/article/10.1186/1477-3155-10-38
Schaffer, M., Schaffer, P. M., Zidan, J., & Bar Sela, G. (2011). Curcuma as a functional food in the control of cancer and inflammation. Current Opinion in Clinical Nutrition and Metabolic Care, 14(6), 588–597. https://doi.org/10.1097/MCO.0b013e32834bfe94
Sharma, N., & Nehru, B. (2018). Curcumin affords neuroprotection and inhibits α-synuclein aggregation in lipopolysaccharide-induced Parkinson’s disease model. Inflammopharmacology, 26(2), 349–360. https://doi.org/10.1007/s10787-017-0402-8
Signal Transduction Pathways and Transcriptional Mechanisms of ABCB1/Pgp-mediated Multiple Drug Resistance in Human Cancer Cells—H Sui, Z-Z Fan, Q Li, 2012. (n.d.). Retrieved 5 November 2020, from https://journals.sagepub.com/doi/abs/10.1177/147323001204000204
Singla, V., Pratap Mouli, V., Garg, S. K., Rai, T., Choudhury, B. N., Verma, P., Deb, R., Tiwari, V., Rohatgi, S., Dhingra, R., Kedia, S., Sharma, P. K., Makharia, G., & Ahuja, V. (2014). Induction with NCB-02 (curcumin) enema for mild-to-moderate distal ulcerative colitis—A randomized, placebo-controlled, pilot study. Journal of Crohn’s and Colitis, 8(3), 208–214. https://doi.org/10.1016/j.crohns.2013.08.006
Su, L., Wang, Y., & Chi, H. (2017). Effect of curcumin on glucose and lipid metabolism, FFAs and TNF-α in serum of type 2 diabetes mellitus rat models. Saudi Journal of Biological Sciences, 24(8), 1776–1780. https://doi.org/10.1016/j.sjbs.2017.11.011
Sui, Z., Salto, R., Li, J., Craik, C., & Ortiz de Montellano, P. R. (1993). Inhibition of the HIV-1 and HIV-2 proteases by curcumin and curcumin boron complexes. Bioorganic & Medicinal Chemistry, 1(6), 415–422. https://doi.org/10.1016/S0968-0896(00)82152-5
Tang, C., Zhu, L., Yu, J., Chen, Z., Gu, M., Mu, C., Liu, Q., & Xiong, Y. (2018). Effect of β-elemene on the kinetics of intracellular transport of d-luciferin potassium salt (ABC substrate) in doxorubicin-resistant breast cancer cells and the associated molecular mechanism. European Journal of Pharmaceutical Sciences, 120, 20–29. https://doi.org/10.1016/j.ejps.2018.04.037
Tęcza, P., & Żylińska, L. (2016). [Preventive effects of curcumin and resveratrol in Alzheimer’s disease]. Przeglad lekarski, 73(5), 320–323.
The oral bioavailability of curcumin from micronized powder and liquid micelles is significantly increased in healthy humans and differs between sexes—Schiborr—2014—Molecular Nutrition & Food Research—Wiley Online Library. (n.d.). Retrieved 6 March 2021, from https://onlinelibrary.wiley.com/doi/full/10.1002/mnfr.201300724
Tripanichkul, W., & Jaroensuppaperch, E. (2012). Curcumin Protects Nigrostriatal Dopaminergic Neurons and Reduces Glial Activation in 6-Hydroxydopamine Hemiparkinsonian Mice Model. International Journal of Neuroscience, 122(5), 263–270. https://doi.org/10.3109/00207454.2011.648760
Tseng, Y.-H., Chiou, S.-S., Weng, J.-P., & Lin, P.-C. (2019). Curcumin and tetrahydrocurcumin induce cell death in Ara-C-resistant acute myeloid leukemia. Phytotherapy Research, 33(4), 1199–1207. https://doi.org/10.1002/ptr.6316
Ungphaiboon, S., Supavita, T., Singchangchai, P., Sungkarak, S., Rattanasuwan, P., & Itharat, A. (2005). Study on antioxidant and antimicrobial activities of turmeric clear liquid soap for wound treatment of HIV patients. 27, 10.
Wang, C., Song, X., Shang, M., Zou, W., Zhang, M., Wei, H., & Shao, H. (2019). Curcumin exerts cytotoxicity dependent on reactive oxygen species accumulation in non-small-cell lung cancer cells. Future Oncology, 15(11), 1243–1253. https://doi.org/10.2217/fon-2018-0708
Xie, L., Li, X.-K., Funeshima-Fuji, N., Kimura, H., Matsumoto, Y., Isaka, Y., & Takahara, S. (2009). Amelioration of experimental autoimmune encephalomyelitis by curcumin treatment through inhibition of IL-17 production. International Immunopharmacology, 9(5), 575–581. https://doi.org/10.1016/j.intimp.2009.01.025
Yang, L., Wei, D.-D., Chen, Z., Wang, J.-S., & Kong, L.-Y. (2011). Reversal of multidrug resistance in human breast cancer cells by Curcuma wenyujin and Chrysanthemum indicum. Phytomedicine, 18(8), 710–718. https://doi.org/10.1016/j.phymed.2010.11.017
Zhang, L., Zhu, W., Yang, C., Guo, H., Yu, A., Ji, J., Gao, Y., Sun, M., & Zhai, G. (2012, January 9). A novel folate-modified self-microemulsifying drug delivery system of curcumin for colon targeting. International Journal of Nanomedicine; Dove Press. https://doi.org/10.2147/IJN.S27639
Zhong, Z., Yu, H., Wang, S., Wang, Y., & Cui, L. (2018). Anti-cancer effects of Rhizoma Curcumae against doxorubicin-resistant breast cancer cells. Chinese Medicine, 13(1), 44. https://doi.org/10.1186/s13020-018-0203-z