Produksi dan Profil Kimia Hidrolisat Protein dari Hasil Samping Pengolahan Udang Segar
Tatty Yuniarti(1*), Adham Prayudi(2), Lilis Supenti(3), Hendria Suhrawardan(4), Pujo Martosuyono(5)
(1) Politeknik Ahli Usaha Perikanan, Unit Praktik Lapang Komunikasi dan Penyuluh Kampus Bogor, Kota Bogor, Jawa Barat, Indonesia
(2) Politeknik Kelautan dan Perikanan Kota Agung, Lampung, Bandar Lampung, Indonesia
(3) Politeknik Ahli Usaha Perikanan, Unit Praktik Lapang Komunikasi dan Penyuluh Kampus Bogor, Kota Bogor, Jawa Barat, Indonesia
(4) Politeknik Ahli Usaha Perikanan, Unit Praktik Lapang Komunikasi dan Penyuluh Kampus Bogor, Kota Bogor, Jawa Barat, Indonesia
(5) Balai Riset Bioteknologi dan Pengolahan Produk Hasil Perikanan, Jakarta, Indonesia
(*) Corresponding Author
Abstract
Keywords
Full Text:
PDFReferences
AOAC. 2005. Association of officiating analytical chemists 18th edition, Washington DC, Method 935.14 and 992.24.
Auwal, S.M., M. Zarei, A. Abdul-Hamid & N. Saari. 2017. Optimization of bromelain-aided production of angiotensin i-converting enzyme inhibitory hydrolysates from stone fish using response surface methodology. Marine Drugs. 15 (4): 104 doi:10.3390/md15040104.
Cahú, T.B., SD. Santos, A. Mendes, C.R. Córdula, S.F. Chavante, L.B. Carvalho, H.B. Nader & R.S. Bezerra. 2012. Recovery of protein, chitin, carotenoids and glycosaminoglycans from pacific white shrimp (Litopenaeus vannamei) processing waste. Process Biochem. 47: 570-577. https://doi.org/10.1016/j.procbio.2011.12.012
Cao, W., C. Zhang, P. Hong, H. Ji, J. Hao & J. Zhang. 2009. Autolysis of shrimp head by gradual temperature and nutritional quality of the resulting hydrolysate. LWT - Food Sci. Technol. 42: 244-249. https://doi.org/10.1016/j.lwt.2008.05.026
Chai, X., W. Wu, C. Chen, X. Duan, H. Yu & X. Liu. 2020. Physical and oxidative stability of chicken oil-in-water emulsion stabilized by chicken protein hydrolysates. Food Sci. Nutr. 8: 371-378. https://doi.org/10.1002/fsn3.1316
Dey, S.S & K.C. Dora. 2014. Optimization of the production of shrimp waste protein hydrolysate using microbial proteases adopting response surface methodology. J Food Sci Technol. 51: 16-24. https://doi.org/10.1007/s13197-011-0455-4
Dhanabalan, V., M. Xavier, L.N. Murthy, K.K. Asha, A.K. Balangea & B.B. Nayak. 2020. Evaluation of physicochemical and functional properties of spray-dried protein hydrolysate from non-penaeid shrimp (Acetes indicus). J. Sci. Food Agric. 100: 50-58. https://doi.org/10.1002/jsfa.9992
Guo, X., X. Han, Y. He, H. Du & Z. Tan. 2014. Optimization of enzymatic hydrolysis for preparation of shrimp flavor precursor using response surface methodology. J. Food Qual. 37: 229-236. https://doi.org/10.1111/jfq.12091
Kandra, P & M.M. Challa., 2012. Efficient use of shrimp waste: Present and future trends. Appl. Microbiol Biotechnol. 17-29. https://doi.org/10.1007/s00253-011-3651-2
Kirimura, J., A. Shimizu, A. Kimizuka, T. Ninomiya & N. Katsuya. 1969. Contribution of peptides and amino acids to the taste of foods. J. Agric. Food Chem. 17: 689-695. https://doi.org/https://doi.org/10.1021/jf60164a031
Klomklao, S & S. Benjakul. 2018. Protein hydrolysates prepared from the viscera of skipjack tuna (Katsuwonus pelmamis): Antioxidative activity and functional properties. Turkish J. Fish. Aquat. Sci. 18: 69-79. https://doi.org/10.4194/1303-2712-v18
Limam, Z., S. Sadok & A. El. Abed. 2008. Enzymatic hydrolysis of shrimp head waste: functional and biochemical properties. Food Biotechnol. 22: 37-41. https://doi.org/10.1080/08905430802458461
Mackay, J.A & A. Chilkot. 2010. Temperature sensitive peptides: Engineering hyperthermia - directed therapeutics. International Journal Hyperth. 24. https://doi.org/10.1080/02656730802149570.
Madende, M & M. Hayes. 2020. Fish by-product use as biostimulants: An overview of the current state of the art , including relevant legislation and regulations within the eu and USA. Molecules 25: 21-20.
Manninen, A.H. 2009. Protein hydrolysates in sports nutrition. Nutr. Metab. (Lond). 6: 1-5. https://doi.org/10.1186/1743-7075-6-38
Marcet, I., C. Álvarez, B. Paredes & M. Díaz. 2016. The use of sub-critical water hydrolysis for the recovery of peptides and free amino acids from food processing wastes . Review of sources and main parameters. Waste Manag. 49: 364371. https://doi.org/10.1016/j.wasman.2016.01.009
Martosuyono, P., Y.N. Fawzya, G. Patantis & S. Sugiyono, 2019. Enzymatic production of fish protein hydrolysates in a pilot plant scale. Squalen Bull. Mar. Fish. Postharvest Biotechnol. 14: 85-92.
Mashari, S., R. Nurmalina & S. Suharno, 2019. Dinamika daya saing ekspor udang beku dan olahan Indonesia di pasar internasional. J. Agribisnis Indones. 7: 37–52.
Mccarthy, A.L., Y.C.O. Callaghan & N.M.O. Brien. 2013. Protein hydrolysates from agricultural crops-bioactivity and potential for functional food development. Agriculture. 3: 112-130. https://doi.org/10.3390/agriculture3010112
Mirzah, Filawati, 2014. Pengolahan Limbah Udang untuk Memperoleh Bahan Pakan Sumber Protein Hewani Pengganti Tepung Ika. J. Peternak. Indones. 15, 52–61.
Mizani, M., M. Aminlari & M. Khodabandeh. 2005. An effective method for producing a nutritive protein extract powder from shrimp-head waste. Food Sci. Technol. Int. 11: 49-54. https://doi.org/10.1177/1082013205051271
Nurdiawati, A., C. Suherman, Y. Maxiselly, M. Ali, A. Bayu & A. Purwoko. 2019. Liquid feather protein hydrolysate as a potential fertilizer to increase growth and yield of patchouli (Pogostemon cablin Benth) and mung bean (Vigna radiata). Int. J. Recycl. Org. Waste Agric. 8: 221-232. https://doi.org/10.1007/s40093-019-0245-y
Petrova, I., I. Tolstorebrov & T. Magne. 2018. Production of fish protein hydrolysates step by step: Technological aspects, equipment used, major energy costs and methods of their minimizing. Int. Aquat. Res. 10: 223-241. https://doi.org/10.1007/s40071-018-0207-4
Randriamahatodya, Z., K.S.B. Syllaa, H.T.M. Nguyena, C. Donnay-Morenoa, L. Razanamparany, N. Bourgougnon & J.P. Bergéa. 2011. Proteolysis of shrimp by-products (Peaneus monodon) from Madagascar. J. Food. 9: 220-228. https://doi.org/http://dx.doi.org/ 10.1080/19476337.2010.518250
Rao, Q., A.K. Kamdar & T.P. Labuza. 2016. Storage stability of food protein hydrolysates: A review. Crit. Rev. Food Sci. Nutr. 56: 1169-1193. https://doi.org/10.1080/10408398.2012.758085
Rutherfurd, S.M. 2010. Methodology for determining degree of hydrolysis of proteins in hydrolysates: A review. J. AOAC Int. 93: 1515–1522.
Ruttanapornvareesakul, Y., M. Ikeda, K. Hara, K. Osako, O., Kongpun & Y. Nozaki. 2005. Effect of shrimp head protein hydrolysates on the state of water and denaturation of fish myofibrils during dehydration. Fish. Sci. 71: 220-228.
Seniman, M.S., S.M. Yusop & A.S. Babji. 2014. Production of enzymatic protein hydrolysates from freshwater catfish (Clarias batrachus), in: AIP Conference Proceedings. 323-328. https://doi.org/10.1063/1.4895216
Silva, C.P., R.S. da, Bezerra, A.C.O.dos. Santos, J.B.M.C.R.O.B.de.Castro & L.B.C. Junior. 2017. Biological value of shrimp protein hydrolysate by-product produced by autolysis. Food Sci. Technol. 80. 456-461. https://doi.org/10.1016/j.lwt.2017.03.008
Silva, M.R. 2013. Degree of hydrolysis and peptide profile of whey proteins using pancreatin. Brazilian Soc. Food Nutr. 38: 278-290. https://doi.org/http://dx.doi.org/10.4322/nutrire.2013.026 Degree
Singh, S.M., R.B. Siddhnath, A. Aziz, N. Verma & B.B. Chriwatkar. 2018. Shrimp waste powder: Potential as protein supplement. Int. J. Pure Appl. Biosci. 6. 401-406. https://doi.org/DOI: http://dx.doi.org/10.18782/2320-7051.7141
Sukkhown, P., K. Jangchud & Y. Lorjaroenphon. 2018. Food Hydrocolloids flavored-functional protein hydrolysates from enzymatic hydrolysis of dried squid by-products : Effect of drying method. Food Hydrocoll. 76. 103-112. https://doi.org/10.1016/j.foodhyd.2017.01.026
Thi, H., T. Vy, T.T. Truc & N. Van. Muoi. 2018. Optimization of protein hydrolysis conditions from shrimp head meat (Litopenaeus vannamei) using commercial alcalase and flavourzyme enzymes. Can Tho Univ. J. Sci. 54. 16-25. https://doi.org/10.22144/ctu.jsi.2018.090
Veeranjaneyulu, K., K.C. Dora & B. Koteswar. 2013. Research article a study on recovery of protein hydrolysate from industrial shrimp waste and its nutritional status. Int. J. Curr. Res. 5. 3656-3661.
Walker J.M., 1983. Protein and Peptide Sequence Determination, in: Walker J.M., Gaastra, W. (Eds.), Techniques in Molecular Biology. Springer, Dordrecht., pp. 87-112. https://doi.org/s://doi.org/10.1007/978-94-011-6563-1_5
Wisuthiphaet, N., S. Klinchan & S. Kongruang. 2016. Fish protein hydrolysate production by acid and enzimatic hydrolysis. KMUTNB Int. J. Appl. Sci. Technol. 9: 261-270. https://doi.org/DOI: 10.14416/j.ijast.2016.11.004
Wisuthiphaet, N & S. Kongruang. 2015. Production of Fish protein hydrolysates by acid and enzymatic hydrolysis. J. Med. Bioeng. 4: 466-470. https://doi.org/10.12720/jomb.4.6.466-470
DOI: https://doi.org/10.22146/jfs.59906
Article Metrics
Abstract views : 6333 | views : 9796Refbacks
- There are currently no refbacks.
Copyright (c) 2021 Jurnal Perikanan Universitas Gadjah Mada
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Jurnal Perikanan Universitas Gadjah Mada (print ISSN 0853-6384; online ISSN 2502-5066) is published by Department of Fisheries, Universitas Gadjah Mada in collaboration with Semnaskan UGM (Seminar Nasional Tahunan Hasil Perikanan dan Kelautan) and ISMFR (International Symposium on Marine and Fisheries Research).
View My Stats