Renoprotective Effect of Agmatine Against Cyclosporin A- Induced Nephrotoxicity in Rats

https://doi.org/10.14499/jfps

Dalia Hassan El-Kahef(1*), Asmaa El-kenawi(2), Ghada Suddek(3), Hatem Salem(4)

(1) Faculty of Pharmacy, Mansoura University
(2) Faculty of Pharmacy, Mansoura University
(3) Faculty of Pharmacy, Mansoura University
(4) Faculty of Pharmacy, Mansoura University
(*) Corresponding Author

Abstract


In this study, the modulator effect of agmatine on the oxidative nephrotoxicity of cyclosporin  (CsA)  in the kidneys of rats was investigated by determining indices of lipid peroxidation and the activities of antioxidant enzymes, as well as by histological analyses. Furthermore, the effect of agmatine on CsA induced hypersensitivity of urinary bladder rings to ACh was estimated. Twenty-four male Sprague-Dawley rats were randomly divided into three groups, namely control, CsA and CsA plus agmatine. At the end of the study, all rats were sacrificed and then blood, urine samples and kidneys were taken. CsA administration caused a severe nephrotoxicity which was evidenced by an elevation of serum creatinine, blood urea nitrogen, serum lactate dehydrogenase and protein in urine with a concomitant reduction in serum albumin and creatinine clearance as compared with the controls. Moreover, a significant increase in renal contents of malondialdehyde, myeloperoxidase and tumor necrosis factor-alpha together with a significant decrease in renal reduced glutathione, superoxide dismutase activities and nitric oxide content was detected upon CsA administration with increasing the sensitivity of isolated urinary bladder rings to ACh. Agmatine protected kidney tissue against the oxidative damage and the nephrotoxic effect caused by CsA treatment.  In addition, agmatine significantly reduced the responses of isolated bladder rings to ACh. The results from our study indicate that agmatine supplement attenuates CsA -induced renal injury via the amelioration of oxidative stress and inflammation of renal tubular cells. Exposure to CsA caused vacuolated tubular cells and thickened wall vessels, which was found to be prevented by agmatine concurrent treatment. Our study indicates that agmatine administration with CsA attenuates oxidative-stress associated renal injury by reducing oxygen free radicals and lipid peroxidation and inhibiting inflammatory mediators such as TNF-α.

Keywords: CsA; Agmatine; Nephrotoxicity; Urinary bladder; TNF-α; Nitric oxide


Full Text:

PDF


References

Abdel-latif, R.G., Morsy, M.A., El-Moselhy, M.A. and Khalifa, M.A. (2013): Sildenafil protects against nitric oxide deficiency-related nephrotoxicity in cyclosporin A treated rats. Eur J Pharmacol ;705(1-3):126-134.

Ateyya, H. (2015): Amelioration of cyclosporin induced nephrotoxicity by dipeptidyl peptidase inhibitor vildagliptin. Int Immunopharmacol, 28: 571-577.

Auguet, M., Viossat, I., Marin, J.G., and Chabrier, P.E. (1995): Selective inhibition of inducible nitric oxide synthase by agmatine. Jpn. J. Pharmacol. 69: 285–287.

Bartels, H., Böhmer, M. and Heierli, C. (1972): Serum creatinine determination without protein precipitation. Clin Chim Acta ;37: 193-197. [Article in German]

Belboul, A., Lofgren, C., Storm, C. and Jungbeck, M. (2000): Heparincoated circuits reduce occult myocardial damage during CPB: A randomized, single blind clinical trial. Eur J Cardiothorac Surg;17: 580–586.

Blantz, R.C., Satriano, J., Gabbai, F., and Kelly, C. (2000): Biological effects of arginine metabolites. Acta Physiol. Scand. 168:21–25.

Burdmann, E. and Bennett, W. (2008): Nephrotoxicity of calcineurin and mTOR inhibitors. In: De Broe M, Porter G, Bennett W, editors. Clinical Nephrotoxins. New York: Springer. p. 403–471.

Chander, V., Tirkey, N. and Chopra, K. (2005): Resveratrol, a polyphenolic phytoalexin protects against cyclosporin-induced nephrotoxicity through nitric oxide dependent mechanism. Toxicology. 15;210(1):55-64

Chandramohan, Y. and Parameswari, C.S. (2013): Therapeutic efficacy of naringin on cyclosporin (A) induced nephrotoxicity in rats: involvement of hemeoxygenase-1. Pharmacol Rep.;65(5):1336-1344.

Ciarcia, R., Damiano, S., Fiorito, F., Granato, G., Pagnini, F., Mastellone, V., Iovane, V., Alfano, L., Valenti, F., Florio, S., Giordano, A. (2012): Hydrocortisone attenuates cyclosporin A-induced nephrotoxicity in rats. J Cell Biochem; 113(3):997-1004.

Daniel, W.W. (1991): Hypothesis testing, In: Biostatistics: A Foundation for Analysis in the Health Sciences. 5th ed., John Wiley & Sons. USA, Chichester, Brisbane, Toronto and Singapore. PP: 191-213.

Daughaday, W.H., Lowry, O,H., Rosebrough, N.J. and Fields, W.S. (1952): Determination of cerebrospinal fluid protein with the Folin phenol reagent. J Lab Clin Med. ;39(4):663-665.

De Nicola, L., Thomson, S.C., Wead, L.M., Brown, M.R. and Gabbai, F.B. (1993): Arginine feeding modifies cyclosporin nephrotoxicity in rats. J. Clin. Invest. 92, 1859–1865.

Demady, D.R., Jianmongkol, S., Vuletich, J.L., Bender, A.T., and Osawa, Y. (2001): Agmatine enhances the NADPH oxidase activity of neuronal NO synthase and leads to oxidative inactivation of the enzyme. Mol. Pharmacol. 59: 24–29.

Deman A, Ceyssens B, Pauwels M, Zhang J, Houte KV, Verbeelen D, Van den Branden C. (2001): Altered antioxidant defense in a mouse adriamycin model of glomerulosclerosis. Nephrol Dial Transplant 16:147–150.

Diederich, D., Skopec, J., Diederich, A., Dai, F.X. (1994): Cyclosporin produces endothelial dysfunction by increased production of superoxide. Hypertension 23; 957–961.

Diederich, D., Yang, Z., Luscher, T.F. (1992): Chronic cyclosporin therapy impairs endothelium-dependent relaxation in the renal artery of the rat. J. Am. Soc. Nephrol. 2, 1291–1297.

Donnahoo, K.K., Meldrum,D.R., Shenkar,R., Chung,C.S., Abraham,E., Harken,A.H. (2000): Early renal ischemia, with or without reperfusion, activates NFkappaB and increasesTNF-alphabioactivityinthekidney.J.Urol.163,1328–1332.

Doumas, B.T., Watson, W.A. and Biggs, HG. (1971): Albumin standards and the measurement of serum albumin with bromcresol green. Clin Chim Acta; 31(1):87-96.

Duru, M., Nacar, A., Yonden, Z., Kuvandik, G., Helvaci, M.R., Koc, A., et al. (2008): Protective effects of N-acetylcysteine on cyclosporin- A-induced nephrotoxicity. Ren Fail.;30:453–459.

Edwards, B.D., Chalmers, R.J., O’Driscoll, J.B., Mitchell, D.M., Smith, R.J., Lawson, R.S., Testa, H.J. and Ballardie, F.W. (1994): Angiotensin II as a risk factor for cyclosporin nephrotoxicity in patients with psoriasis. Clin Nephrol 41:350–356.

El-Gowelli, H.M., Helmy, M.W., Ali, R.M., El-Mas, M.M. (2014): Celecoxib offsets the negative renal influences of cyclosporin via modulation of the TGF-β1/IL-2/COX-2/endothelin ET(B) receptor cascade. Toxicol Appl Pharmacol. 1;275(2):88-95.

El-Kashef, D.H., El-Kenawi, A.E., Suddek, G.M. and Salem, H.A. (2017): Allicin ameliorates kidney function and urinary bladder sensitivity in cyclosporin A-treated rats. Hum Exp Toxicol. 2;36(7):681-691.

Ellman, G.L. (1959): Tissue sulfa hydryl groups. Arch Biochem. Biophys. 74: 214-226.

El-Mas, M.M., Afify, E.A., Omar, A.G., Mohy El-Din, M.M., Sharabi, F.M., (2003): Testosterone depletion contributes to cyclosporin-induced chronic impairment of acetylcholine renovascular relaxations. Eur. J. Pharmacol. 468, 217–224.

English, J., Evan, A., Houghton, D.C. and Bennet, W.M. (1987): Cyclosporin induced acute renal dysfunction in the rat. Evidence of arteriolar vasoconstriction with preservation of tubular function. Transplantation 44, 135–141.

Fawcett, J.K. and Scott, J.E. (1960): A rapid and precise method for the determination of urea. J Clin Pathol. ;13:156-9.

Fernández-Fresnedo, G., Escallada, R., Rodrigo, E. et al. (2001): Proteinuria as a useful clinical marker of cyclosporin nephrotoxicity in renal transplant patients. Transplant Proc, 33: 3373-3374.

Flak, T.A., and Goldman, W.E. (1996): Autotoxicity of nitric oxide in airway disease. Am. J. Respir. Crit. Care Med. 154: S202–S206.

Fogo, A., Hellings, S.E., Inagami, T. and Kon, V. (1992): Endothelin receptors antagonism in protective in vivo acute cyclosporin toxicity. Kidney Int 42:770–774.

Gabr, M.M., Hussein, A.M., Sherif, I.O., Ali, S.I., Mohamed, H.E. (2011): Renal ischemia/reperfusion injury in type II DM: possible role of pro inflammatory cytokines, apoptosis and nitricoxide. J.Physiol.Pathophysiol .2,6–17.

Gökçe, A., Oktar. S., Yönden, Z., Aydin, M., Ilhan, S., Ozkan, O.V., Davarci, M. and Yalçinkaya, F.R. (2009): Protective effect of caffeic acid phenethyl ester on cyclosporin A-induced nephrotoxicity in rats. Ren Fail; 31(9):843-7

Goksu Erol, A.Y., Avcı, G., Sevimli, A., Ulutas, E. and Ozdemir, M. (2013): The protective effects of omega 3 fatty acids and sesame oil against cyclosporin A-induced nephrotoxicity. Drug Chem Toxicol; 36(2):241-248.

Gu, Y., Fan, X., Zhang, C., Yang, X., Bao, Y. and Liang, H. (2011): The protective effects of agmatine in zymosan induced acute lung injury in mice. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue. 23: 665-668 [abstract].

Heinecke, J.W., Li, W., Francis, G.A. and Goldstein, J.A. (1993): Tyrosyl radical generated by myeloperoxidase catalyzes the oxidative cross-linking of proteins. J Clin Invest; 91:2866–2872.

Henry, J.B. Todd Sanford Davidsohn (1974): clinical diagnosis and management by laboratory methods, 16th edn, WB Saunders and Co., Philadelphia.

Herlitz, H. and Lindelöw, B. (2000): Renal failure following cardiac transplantation. Nephrol. Dial. Transplant. 15, 311–314.

Hong, S., Kim C.Y., Lee, J.E., and Seong GJ. 2009. Agmatine protects cultured retinal ganglion cells from tumor necrosis factor-alpha-induced apoptosis. Life Sci. 84: 28–32.

Khanna, Y., Taneja, S., Raj, H. and Venkitasubramanian, T. (1982): Polyamines modify paraquat-induced changes in pulmonary superoxide dismutase and lipid peroxidation. Res Commun Chem Pathol Pharmacol, 35: 337-340.

Kotagale, N.R., Shirbhate, S.H., Shukla, P., and Ugale, R.R. (2013): Agmatine attenuates neuropathic pain in sciatic nerve ligated rats: modulation by hippocampal sigma receptors. Eur. J. Pharmacol. 714:424-431.

Kovarik, J.M. and Burtin, P. (2003): Immunosuppressants in advanced clinical development for organ transplantation and selected autoimmune diseases. Expert Opin. Emerg. Drugs 8, 47–62.

Lei, D.M., Piao, S.G., Jin, Y.S., Jin, H., Cui, Z,H., Jin, H.F., Jin, J.Z., Zheng, H.L., Li, J.J., Jiang, Y.J., Yang, C.W. and Li, C. (2014): Expression of erythropoietin and its receptor in kidneys from normal and cyclosporin-treated rats. Transplant Proc ; 46(2):521-528.

Li, G., Regunathan, S., Barrow, C.J., Eshraghi, J., Cooper, R., and Reis, D.J. (1994): Agmatine: an endogenous clonidine-displacing substance in the brain. Science. 263:966–969.

Lo Russo, A., Passaquin, A.C., Andre, P., Skutella, M. and Ruegg, U.T. (1996): Effect of cyclosporinA and analogues on cytosolic calcium and vasoconstrition: Possible lack of relationship to immunosuppressive activity. Br J Pharmacol 118:885–892.

Lubec, B., Hayn, M., Kitzmüller, E., Vierhapper, H., and Lubec, G. (1997): l-arginine reduces lipid peroxidation in patients with diabetes mellitus. Free Radic. Biol. Med. 22: 355–357.

Mansour, M., Daba, M.H., Gado, A., Al-Rikabi, A., Al-Majed, A. (2002): Protective effect of l-arginine against nephrotoxicity induced by cyclosporin in normal rats. Pharmacol. Res. 45, 441–446.

Mariappan, N., Soorappan, R.N., Haque, M., Sriramula,S. and Francis, J. (2007): TNF- alpha-induced mitochondrial oxidative stress and cardiac dysfunction: restoration by superoxide dismutase mimetic Tempol. Am. J. Physiol. Heart Circ. Physiol.293,H2726–H2737.

Marklund, S.L. (1985): Superoxide dismutase isoenzymes in tissues and plasma from New Zealand black mice, nude mice and normal BALB/c mice. Mutat. In mice Res. 148: 129-134.

Marx, M., Trittenwein, G., Aufricht, C., Hoeger, H., and Lubec, B. (1995): Agmatine and spermidine reduce collagen accumulation in kidneys of diabetic db/db mice. Nephron. 69: 155–158.

Mervaala, E.M.A., Pere, A.K., Lindgren, L., Laasko, J., Tera¨va¨inen, T.L., Karjala, K., Vapaatalo, J., Ahonen, J. and Karppanen H. (1997): Effects of dietary sodium and magnesium on ciclosporineA-induced hypertension and nephrotoxicity in spontaneously hypertensive rats. Hypertension 29:822–827.

Moretti, M.E., Sgro, M., Johnson, D.W., Sauve, R.S., Woolgar, M.J., Taddio, A., et al. (2003): Cyclosporin excretion into breast milk. Transplantation; 75: 2144–2146.

Morrissey, J., McCracken, R., Ishidoya, S., and Klahr, S. (1995): Partial cloning and characterization of an arginine decarboxylase in the kidney. Kidney Int. 47: 1458–1461.

Mostafa, A.M., Nagi, M.N., Al-Shabanha, O.A. and El-Kashef, H.A. (2000): Effect of aminoguanidine and melatonin on the response of isolated urinary bladder to acetylcholine in normal and diabetic rats. Med. Sci. Res. 28: 33-37.

Myers, B. (1986): Cyclosporin nephrotoxicity. Kidney Int.;30: 964–974.

Nakamura, I., Takahashi, C. and Miyagawa, I. (1992): The alterations of norepinephrine and acetylcholine concentrations in immature rat urinary bladder caused by streptozotocin induced diabetes J. Urol. 148: 423-426.

Nath, K.A. and Norby, S.M. (2000): Reactive oxygen species and acute renal failure. Am J Med, 109, 665–678.

Navarro-Antolin, J., Hernandez-Pereira, O., Lopez-Ongil, S., Rodriguez- Puyol, M., Lamas, S. (1998): CsA and FK-506 up-regulate eNOS expression: Role of reactive oxigen species and AP-1. Kidney Int 68:S20–S24.

Neis, V.B., Manosso, L.M., Moretti, M., Freitas, A.E., Daufenbach, J., and Rodrigues, A.L.(2014): Depressive-like behavior induced by tumor necrosis factor-α is abolished by agmatine administration. Behav. Brain Res. 261:336-344.

Nicholls, S.J. and Hazen, S.L. (2005): Myeloperoxidase and cardiovascular disease. Arterioscler Thromb Vasc Biol; 25: 1102–1111.

Okhawa, H., Ohishi, N. and Yagi, K. (1979): Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 95: 351-358.

Perico, N., Benigni, A., Zoja, C., Delaini, F., Remuzzi, G., 1986b. Functional significance of exaggerated renal thromboxane A2 synthesis induced by cyclosporin A. Am. J. Physiol. 251, F581–F587.

Perico, N., Zoja, C., Benigni, A., Bosco, E., Rossini, M., Morelli, C., Cattaneo, G.M., Remuzzi, G., 1986a. Renin-angiotensin system and glomerular prostaglandins in early nephrotoxicity of cyclosporin. Contrib. Nephrol. 51, 120–125.

Payandemehr, B., Rahimian, R., Bahremand, A., Ebrahimi, A., Saadat, S., Moghaddas, P., et al.( 2013): Role of nitric oxide in additive anticonvulsant effects of agmatine and morphine. Physiol. Behav. 118:52-57.

Raasch, W., Regunathan, S., Li, G., and Reis, D.J. 1995. Agmatine, the bacterial amine, is widely distributed in mammalian tissues. Life Sci. 56: 2319–2330.

Radner, W., Höger, H., Lubec, B., Salzer, H., and Lubec, G. (1994): L-arginine reduces kidney collagen accumulation and N-epsilon- (carboxymethyl) lysine in the aging NMRI-mouse. J. Gerontol. 49:M44–M46.

Rouch, A. and Kudo, L. (2002): Agmatine inhibits arginine vasopressin-stimulated urea transport in the rat inner medullary collecting duct. Kidney Int; 62: 2101-2108.

Rushaidhi, M., Collie, N.D., Zhang, H., and Liu, P. (2012): Agmatine selectively improves behavioural function in aged male Sprague-Dawley rats. Neuroscience. 218: 206-215.

Santos, A., Gadotti, V., Oliveira, G. et al. (2005): Mechanisms involved in the antinociception caused by agmatine in mice. Neuropharmacology, 48: 1021-1034.

Schierwagen, C., Bylund-Fellenius, A.C. and Lundberg, C. (1990): Improved method for quantification of tissue PMN accumulation measured by myeloperoxidase activity J Pharmacol Methods. 23(3):179-186.

Schuiling, M., Meurs, H., Zuidhof, A.B., Venema, N., and Zaagsma, J. (1998): Dual action of iNOS-derived nitric oxide in allergen-induced airway hyperreactivity in conscious, unrestrained guinea pigs. Am. J. Respir. Crit. Care Med. 158: 1442–1449.

Shin, B.C., Kwon, Y.E., Chung, J.H. and Kim, H.L. (2012): The antiproteinuric effects of green tea extract on acute cyclosporin-induced nephrotoxicity in rats. Transplant Proc ;44(4):1080-2.

Schwartz, D., Peterson, O.W., Mendonca, M., Satriano, J., Lortie, M., and Blantz, R.C. (1997): Agmatine affects glomerular filtration via a nitric oxide synthase-dependent mechanism. Am. J. Physiol. 272: F597–F601.

Takenaka, T., Hashimoto, Y., Epstein, M. (1992): Diminished acetylcholine-induced vasodilation in renal microvessels of cyclosporin-treated rats. J. Am. Soc. Nephrol. 3, 42–50.

Ten Broeke, R., De, C.R., Van Haperen, R., Verweij, V., Leusink-Muis, T., Van Ark, I., et al. (2006): Overexpression of endothelial nitric oxide synthase suppresses features of allergic asthma in mice. Respir. Res. 7: 58.

Teixeira, R.B., Kelly, J., Alpert, H., Pardo, V. and Vaamonde, C.A. (1982): Complete protection from gentamicin-induced acute renal failure in the diabetes mellitus rat. Kidney Int. 21: 600-612.

Uzbay, T.I. (2012): The pharmacological importance of agmatine in the brain. Neurosci. Biobehav. Rev. 36: 502–519.

Wongmekiat, O. and Thamprasert, K. (2005): Investigating the protective effects of aged garlic extract on cyclosporininduced nephrotoxicity in rats. Clin Pharmacol, 19, 555–562.

Yilmaz, S., Atessahin, A., Sahna, E., Karahan, I., Ozer, S. (2006): Protective effect of lycopene on adriamycin-induced cardiotoxicity and nephrotoxicity. Toxicology 218:164–171.

Zal, F., Mostafavi-Pour, Z. and Vessal, M. (2007): Comparison of the effects of vitamin E and/or quercetin in attenuating chronic cyclosporin A-induced nephrotoxicity in male rats. Clin Exp Pharmacol Physiol;34:720–724.

Zoja, C., Furci, L., Ghilardi, F., Zilio, P., Benigni, A., Remuzzi, G. (1996): Cyclosporin-induced endothelial cell injury. Lab. Invest. 55, 455–462.



DOI: https://doi.org/10.14499/jfps

Article Metrics

Abstract views : 346 | views : 0

Refbacks

  • There are currently no refbacks.